On the Size and Structure of Group Cooperation

Matthew Haag and Roger Lagunoff

NOTA DI LAVORO 54.2003

JUNE 2003

CTN – Coalition Theory Network

Matthew Haag, Department of Economics, University of Warwick
Roger Lagunoff, Department of Economics, Georgetown University

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
Social Science Research Network Electronic Paper Collection:
http://papers.ssrn.com/abstract_id=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
On the Size and Structure of Group Cooperation

Summary

This paper examines characteristics of cooperative behavior in a repeated, \(n \)-person, continuous action generalization of a Prisoner’s Dilemma game. When time preferences are heterogeneous and bounded away from one, how “much” cooperation can be achieved by an ongoing group? How does group cooperation vary with the group’s size and structure? For an arbitrary distribution of discount factors, we characterize the maximal average co-operation (MAC) likelihood of this game. The MAC likelihood is the highest average level of cooperation, over all stationary subgame perfect equilibrium paths, that the group can achieve. The MAC likelihood is shown to be increasing in monotone shifts, and decreasing in mean preserving spreads, of the distribution of discount factors. The latter suggests that more heterogeneous groups are less cooperative on average. Finally, we establish weak conditions under which the MAC likelihood exhibits increasing returns to scale when discounting is heterogeneous. That is, larger groups are more cooperative, on average, than smaller ones. By contrast, when the group has a common discount factor, the MAC likelihood is invariant to group size.

Keywords: Repeated games, Maximal average Cooperation likelihood, Heterogeneous discount factors, Returns to scale

JEL: C7, D62, D7

This paper has been produced within the research activities of the Coalition Theory Network managed by the Center of Operation Research and Economics, Louvain-la-Neuve, the Fondazione Eni Enrico Mattei, Venice, the GREQAM, Université de la Méditerranée, Marseille, the CODE, University of Barcelona and the University of Warwick, Great Britain. It has been presented at the Eighth Meeting of the Coalition Theory Network organised by GREQAM in Aix-en-Provence, France, 24th-25th January 2003. The authors thank seminar participants at Georgetown, Johns Hopkins, Indiana, LSE, Rochester, Toronto, and Warwick for their comments and useful suggestions. Some of the research for this project was completed while the second author visited the W. Allen Wallis Institute of Political Economy at the University of Rochester in the Fall, 2002. Their hospitality, and the financial support of NSF Grant SES-0108932 are gratefully acknowledged.

Address for correspondence:

Matthew Haag
University of Warwick
Economics Department
Coventry CV4 7AL
U.K.
Phone: +44 (0) 24 7652 3052
Fax: +44 (0) 24 7652 3032
E-mail: Matthew.Haag@warwick.ac.uk
1 Introduction

Successful cooperation at some level is required in any group. In most contexts, teams, clubs, and partnerships function most effectively when their members get along with one another. When they do not, substantial social conflicts often result.

This paper examines characteristics of group cooperation in a repeated, collective action environment. Specifically, we study an n-person repeated game that resembles a repeated Prisoner’s Dilemma game. At each stage, each member of the group can choose some (normalized) level of effort or contribution in the unit interval which indicates how cooperative he is toward other members of the group. An individual is better off the more cooperative are the other members in the aggregate. However, each has a (static) incentive to behave uncooperatively.

How can successful cooperation be determined for this group? Specifically, how “much” cooperation can this group achieve? Moreover, how does the level of achievable cooperation respond to changes in the size and composition of the group?

One standard view of group cooperation, dating at least back to Olson (1965), is that (a) group decisions typically entail free rider problems that limit/prevent cooperative outcomes, and (b) these problems are worse in larger groups than in smaller ones. In the context of a repeated Prisoner’s Dilemma game, the view expressed in (a) is more or less correct when discounting is large. That is, when members are uniformly impatient, the incentives of the stage game take over and, consequently, joint cooperation cannot be sustained. On the other hand, a polar view of group cooperation is obtained when the members are uniformly patient. The Folk Theorem, according to which any feasible and individually rational payoff profile is sustainable if all group members are sufficiently and uniformly patient, provides an alternative conclusion to (a).\footnote{Fudenberg and Maskin (1986) is a standard reference.} Namely, the collective action problem is easily resolved in the limit as the common discount factor approaches one. Hence, equilibria exist in which all group members are cooperative each period. As for (b), group size plays no role either when players are uniformly patient or uniformly impatient.\footnote{To be fair, Olson (1965) outlined several reasons for ineffectiveness of larger groups which are not considered here. See Section 5 for an extended discussion.}

These claims are more difficult to evaluate in the intermediate cases where discount factors are bounded away from either zero or one. Moreover, neither of these polar cases can effectively evaluate these and other issues when discounting is heterogeneous. For example, what effect does a mix of patient and impatient group members have on attaining cooperative outcomes? Presumably, collective decision problems occur in these cases as well.

To address these questions, we therefore depart from the traditional focus on uniformly
patient players in repeated games.3 Instead, we examine a measure of cooperation in a group whose members possess arbitrary discount factors.

Consider a group with \(n \) members. Let \(\delta_i \) denote the discount factor for member, \(i = 1, \ldots, n \). Let \(\delta = (\delta_1, \ldots, \delta_n) \) denote the profile of discount factors. Consider, in a repeated game of perfect monitoring, the set of stationary, subgame perfect equilibria (SSPE), i.e., equilibria in which the same action profile is taken each period. Let \(p_i \in [0, 1] \) indicate the level of cooperation by group member \(i \) each period in an SSPE. For instance, \(p_i \) may indicate a (normalized) level of effort by member \(i \). A convenient alternative interpretation is that \(p_i \) is the probability that member \(i \) assigns to a discrete, “cooperative” action in a binary action game.4 Now consider a profile of actions, \(p = (p_1, \ldots, p_n) \), that maximizes the average level of cooperation given by

\[
\frac{1}{n} \sum_{i=1}^{n} p_i
\]

over all SSPE paths. The value of this program is a level of cooperation, \(p^*(n, \delta) \in [0, 1] \), which we call the \textit{maximal average cooperation (MAC) likelihood}. The maximal average cooperation (MAC) likelihood describes the highest average level of cooperation attainable by the group each period when behavior is stationary.

We are interested in the MAC likelihood, rather than in group welfare, because the former is calculated from behavior directly. To an external observer who may not observe the players’ payoffs, the MAC likelihood provides an objective measure of group performance. A manager of a firm who knows nothing about the details of the payoffs of his divisional workers, may nevertheless measure the effectiveness of the group by examining their average cooperative effort.

Even so, using the MAC likelihood as a measure of attainable cooperation is restrictive because stationary equilibria entail some loss of generality when discounting is heterogeneous. For one thing, a recent paper by Lehrer and Pauzner (1999) shows that the feasible payoff set changes when discounting is heterogeneous. In particular, there are typically equilibrium payoffs outside the convex hull of the stage game payoff set if individuals are sufficiently but heterogeneously patient. The intuition is that relatively impatient players can receive favorable payoffs early on, while relatively patient ones receive rewards later in the game. For another, the MAC likelihood when the interpretation of \(p \) is as a \textit{mixed action} profile is problematic: when discount factors are bounded away from one, the assumption that mixed action histories are observable is no longer without loss of generality. For this reason, the interpretation of \(p \) as a profile of continuous pure actions is the more desirable one.5

3Other work which departs from the uniform patience assumption is discussed later in this Section.

4The latter interpretation assumes that the history of mixed action profiles are observable.

5The mixed action interpretation is only used in the analysis as a convenience.
On the other hand, the restriction to stationary equilibria may be justified on at least four grounds. First, so little is known about equilibria when discounting is bounded away from either one or zero that it seems sensible to start with an approach that admits a transparent comparison with standard models. In particular, because the stationary payoff set does not change if discounting is heterogeneous, stationary equilibria can isolate changes due to equilibrium behavior rather than due to changes in feasibility constraints.

Second, the stationary equilibria facilitate objective measurement of the group by an outside observer. This is especially relevant to a neutral observer or to a personell manager of the firm. By contrast, nonstationary equilibria present problems for measurement since it is unclear how cooperation early in the game should be weighted against cooperation later if there is no common discount factor.

Third, stationary equilibria — especially the variety studied here — are particularly simple to implement. Using example of the personell manager again, the firm may require cooperation from a team of employees, but be unable to monitor their performance directly. Hence, equilibria of low complexity that require only self-monitoring may be desirable.

Finally, these stationary equilibria will, for our purposes, prove useful as they highlight potential social conflicts generated by the interaction of patient and impatient individuals. Even as an imperfect estimate, the MAC likelihood effectively summarizes these conflicts.

Section 2 describes the case of two players. There the MAC likelihood is explicitly calculated. In the \(n \) player case in Section 3, we prove that the MAC likelihood is characterized by a maximal fixed point of a particular function. Properties of this function provide critical information as to how cooperation varies with size and the composition of the group.

Our main results are in Section 4. The findings fall into two categories: (1) the effect on cooperation when the composition of the group changes (holding size fixed); (2) the effect on cooperation when group size changes.

One rather expected finding from the first category is that the MAC likelihood is increasing in monotone shifts in the distribution of time preferences. More patient groups are more cooperative.

A less obvious finding is that mean preserving spreads reduce the MAC likelihood. Group heterogeneity lowers cooperation. Greater social conflict is generated by greater conflict in time preferences of the members. Roughly, the result comes from the fact that an individual’s level of cooperation in a “MAC” equilibrium turns out to be concave in his own discount factor. Hence, increments to cooperation are decreasing in one’s own patience.

The main result of the second category establishes sufficient conditions under which the MAC likelihood exhibits increasing returns to scale. Suppose an \(n \)-person group with discounting profile \(\delta^n \) doubles in size holding everything else, including the distribution of discount factors, constant. Then the MAC likelihood exhibits increasing returns if
More generally, for any scale factor α, the MAC likelihood exhibits increasing (decreasing) returns to scale if

$$p^*(\alpha n, \delta^{\alpha n}) > (<) p^*(n, \delta^n).$$

In words, increasing returns to scale exist if the average level of cooperation of the scaled up group exceeds that of the original group. If $p^*(n, \delta^n)$ lies strictly between 0 and 1, we show that increasing (decreasing) returns to scale exist if all individuals’ discount factors lie above (below) a certain threshold.

The result demonstrates, however, a certain propensity toward increasing, rather than decreasing, returns. Specifically, the MAC likelihood is shown to exhibit increasing returns if two conditions hold. First, the average discount factor among interior cooperators (those for whom $p_i < 1$) exceeds the aforementioned threshold. The second condition is a “risk-dominance-like” property on the stage game. The condition requires that in any bilateral relationship, the relative loss from cooperating against an uncooperative member is smaller than the relative gain to deviating against a cooperative one.

The intuition for the result is as follows. Because a player’s cooperation likelihood in equilibrium depends on the distribution of discount factors of others, seemingly neutral changes in scale are not neutral from a particular player’s point of view. Take for example a 2-person group with a patient and an impatient player. If this group is replicated once, doubling in size, then the patient player faces one other patient player and two impatient players. Whereas before, he faced one impatient player. Hence the proportion of patient to impatient players has changed favorably for the patient player. This explains why the marginal response to a change in scale is positive above a fixed threshold discount factor and is negative below it. What is crucial is that this marginal response is convex in the discount factor. The convexity creates an asymmetry between patient and impatient players in their responses to increases in group size. Impatience has a dampening effect: an impatient player cares less about the future responses of others to his current action. Consequently, the positive response of the patient player to an increase in scale exceeds the negative response of the impatient one.

Significantly, returns to scale critically requires heterogeneity. The assumptions do not hold, and the result fails when discounting is homogeneous. When players’ time preferences are the same, the MAC likelihood is invariant to group size.

Section 6 summarizes these findings and discusses limitations and possibilities for future work. Section 7 is an Appendix which contains all the proofs of the results. Most of these are computation-intensive but are otherwise straightforward. The results demonstrate, in limited form, that both group size and its composition matters. Moreover, it matters in a way quite different than is supposed by the standard logic. In a heterogeneous group, intertemporal incentives for good behavior sometimes improve with size, but generally worsen with more group diversity.
The literature comparing the size of a group with the degree of cooperation in static collective action games is vast. See Sandler (1992) or Marwell and Oliver (1993) for surveys. In particular, there are studies which find a reversal of Olson’s conjecture that cooperation is more difficult in larger groups. These include include Esteban and Ray (2001), McGuire (1974), and Chamberlin (1974). They show that an increase in group size may increase the total provision of the public good, even though individual contributions may fall. Our model, however, shows something stronger. Namely, an increase in group size may lead to increase in the average contribution. Moreover, it is the repeated game nature of the problem, coupled with heterogeneous discounting, which makes this so.

Surprisingly, there are few studies of repeated games with heterogeneous discounting. One seminal exception is the aforementioned work by Lehrer and Pauzner (LP) (1999). They examine two-player repeated games with differential discount factors. Their main results characterize the feasible payoffs, and the equilibrium payoffs in the “heterogeneous limit,” meaning that fixed differences between the two discount factors are maintained while discounting approaches one. Heterogeneous limits in discounting also appear in a number of other repeated game studies. Fudenberg, Kreps, and Maskin (1990) prove a Folk Theorem for a subset of the players when the other players’ discount factors are 0. Harrington (1989) characterizes the bounds on heterogeneous discount factors required to achieve collusion in oligopolies. Fudenberg and Levine (1989), Celantani, et al. (1995), and Aoyagi (1996) all examine reputation-building by a sufficiently patient, long run player who faces a sequence of short run players in a repeated game. Finally, a similar approach to the present paper was taken in Haag and Lagunoff (2001), which examined stationary trigger strategies in a local interaction network.

2 An Example with Two Group Members

To see how the MAC likelihood is determined, we begin with the quintessential collective action problem of Prisoner’s Dilemma. In the game below, a player’s level of cooperation, \(p_i \), is a probability of cooperation, and the payoffs are mixed extensions to a finite action game. The game matrix is given in Figure 1 below.

\[
\begin{array}{c|cc}
 & C & D \\
\hline
C & c, c & -\ell , d \\
D & -\ell & 0, 0 \\
\end{array}
\]

Figure 1: Prisoner’s Dilemma

\[\delta^{\Delta t} \text{ where } \Delta \text{ is the time length of a period.}\]

\[\frac{\log(\delta_1)}{\log(\delta_2)} \]

Specifically, a player’s discount factor in the LP model is \(\delta^{\Delta t} \) where \(\Delta \) is the time length of a period. LP examine equilibrium payoffs when \(\Delta \) is close enough to zero while maintaining a fixed log ratio between the two discount factors.
As is typical of PD games, each individual can choose a cooperative action, C, or an uncooperative one, D, each period. For Prisoner’s Dilemma we require that $d > c > 0 > -\ell$, and $2c > d - \ell$. For ease of exposition, we also assume in this Section that $d > c + \ell$.\(^7\)

When the PD game is infinitely repeated, it is a standard exercise to show that the profile (C, C) can be sustained as a subgame perfect equilibrium if both individuals are sufficiently patient. How well can they do if one or both discount factors falls below the “patience threshold?”

Let δ_i denote the discount factor of individual $i = 1, 2$. Each individual uses δ_i to calculate his average discounted sum of payoffs. Let p_i denote the probability that Player i chooses to cooperate in a stationary subgame perfect equilibrium (SSPE) in which mixed action histories are observable by both members.\(^8\) The pair (p_1, p_2) constitutes an SSPE if for each $i = 1, 2$, and $j \neq i$,

$$p_i(p_j c - (1 - p_j)\ell) + (1 - p_i)p_j d \geq (1 - \delta_i)p_j d \quad (3)$$

The left hand side of (3) is Player i’s average payoff under the stationary action profile (p_1, p_2). The right hand side is the one shot gain from a deviation to the uncooperative action with the consequence that both members permanently revert thereafter to the one shot Nash equilibrium, (D, D).

Inequality (3) yields this system of inequalities

$$\delta_i p_2 \geq p_1(p_2 \mu + (1 - p_2)\gamma)$$
$$\delta_2 p_1 \geq p_2(p_1 \mu + (1 - p_1)\gamma) \quad (4)$$

where $\mu \equiv (d - c)/d$ and $\gamma \equiv \ell/d$.\(^9\) The first inequality is Player 1’s incentive constraint against deviating to D. The second inequality is the identical incentive constraint for Player 2. Clearly, full cooperation, i.e., $(p_1, p_2) = (1, 1)$ solves this system whenever $\delta_i \geq \mu \equiv (d - c)/d$ for both $i = 1, 2$. In this case the Folk Theorem property applies.

However, when $\delta_i < \mu$ for either or both players, one can still sensibly ask: how "well" these two can do on average in any SSPE? The maximal average cooperation (MAC) likelihood, defined by the maximal value of $\frac{1}{2}(p_1 + p_2)$ over all SSPE pairs (p_1, p_2), provides one answer. This value, which we denote by p^*, is the highest likelihood that a randomly chosen individual from this pair is cooperative in equilibrium.

Any candidate pair (p_1, p_2) for determining a MAC likelihood must fall into one of four categories. (i) only Player 1’s incentive constraint binds; (ii) only Player 2’s constraint

\(^7\)Roughly, this condition is needed to ensure that symmetric mixed equilibria may be optimal when players are impatient.

\(^8\)As we observed earlier, the assumption of observed mixed actions is restrictive, and so this example is intended for illustrative purposes. In the general model, we examine the case of continuous pure actions rather than the mixed extensions.

\(^9\)Note that by our earlier assumptions, $\mu > \gamma$ since $d > c + \ell$.

6
binds; (iii) both bind; or (iv) neither bind. Notice also that if a constraint does not bind, then for that player i, it must be that $p_i = 1$ since otherwise, his cooperation probability can be increased without violating the incentive constraint of the other player. Solving the system (4) for these four cases, the MAC likelihood is given by

$$p^* = \begin{cases}
1 & \text{if } \delta_i \geq \mu, \text{ for } i = 1, 2 \\
\frac{1}{2} \left[\frac{\delta_i}{\mu} + 1 \right] & \text{if } \delta_1 < \mu \text{ and } \delta_1 \delta_2 \geq \mu \gamma + \delta_1 (\mu - \gamma) \\
\frac{1}{2} \left[1 + \frac{\delta_2}{\mu} \right] & \text{if } \delta_2 < \mu \text{ and } \delta_1 \delta_2 \geq \mu \gamma + \delta_2 (\mu - \gamma) \\
\frac{1}{2} \left[\frac{\delta_1 \delta_2 - \gamma^2}{(\delta_2 + \gamma)(\mu - \gamma)} + \frac{\delta_1 \delta_2 - \gamma^2}{(\delta_1 + \gamma)(\mu - \gamma)} \right] & \text{if } \gamma^2 \leq \delta_1 \delta_2 < \mu \gamma + \min\{\delta_1, \delta_2\}(\mu - \gamma) \\
0 & \text{if } \delta_1 \delta_2 < \gamma^2
\end{cases} \tag{5}$$

In expression (5), the MAC likelihood takes on distinct values in each of five regions in discount factor space. These regions are exhibited in Figure 2. For example, the conditions which generate a MAC likelihood of $\frac{1}{2} \left[\frac{\delta_1}{\mu} + 1 \right]$ are those in which Player 2’s constraint does not bind, and Player 1’s does bind. In this case, Player 2 cooperates with certainty, while Player 1 “partially cooperates,” choosing C with probability less than one. Solving for Player 1’s binding constraint when $p_2 = 1$ gives $p_1 = \delta_1 / \mu \equiv \delta_1 / d - c$. Hence, a player who discounts to 20% of the full cooperation threshold μ is uncooperative 20% of the time.

It is clear from (5) that p^* is (weakly) increasing and continuous in the pair (δ_1, δ_2). It is also straightforward to show that the MAC likelihood is generally decreasing in mean preserving spreads of the original pair (δ_1, δ_2). This means that the larger is the difference in the two players’ time preferences, other things equal, the less cooperative is the group on average.

A noteworthy special case is the symmetric case where $\delta_1 = \delta_2 = \bar{\delta}$. In this case (5) reduces to

$$p^* = \begin{cases}
1 & \text{if } \bar{\delta} \geq \mu \\
\frac{\bar{\delta} - \gamma}{\mu - \gamma} & \text{if } \gamma \geq \bar{\delta} < \mu \\
0 & \text{if } \bar{\delta} < \gamma
\end{cases} \tag{6}$$

Many interesting questions pertain to group size. To answer these, the n-group model is developed in the subsequent section. Unfortunately, the simple solution technique — solving
a system of inequalities that do not bind at the boundaries of $[0, 1]^2$ — is impractical with $n > 2$ players. The good news is that one need not solve the system to obtain the MAC likelihood. Since only knowledge of the aggregate level of cooperation is required, the MAC likelihood can be characterized by a single, continuous, piecewise-smooth function.

3 A Model of Group Cooperation

3.1 The n-Group

A collection of n individuals play an infinitely repeated game in discrete time $t = 0, 1, \ldots$. We refer to this collection as the “n-group” or, more simply, “the group.” In each period, the stage game is as follows. Each member i of the n-group chooses a number, p_i, from a set $[0, 1]$ of feasible actions. The action p_i determines member i’s chosen level of cooperation toward the group. An action profile is given by $p = (p_1, \ldots p_n)$.

Each individual’s payoff is assumed to increase in the aggregate level of cooperation of other members of the group, but assumed to decrease in his own level of cooperation in the aggregate. If an individual is highly cooperative while other group members are highly
uncooperative, the individual incurs a loss. In order to maintain constant returns in the static incentives for cooperation (so as not to bias the results on size later on), we assume that an individual’s payoffs have the following co-linear form:

\[
\pi_i(p) = \sum_{j \neq i} [p_i (p_j c + (1 - p_j)(-\ell)) + (1 - p_i)p_jd]
\]

(7)

where \(c\) is the reward to mutual cooperation, \(d\) is the reward to (unilaterally) uncooperative behavior, and \(\ell\) is the loss incurred from others’ uncooperative behavior. We assume that \(d > c > 0 > -\ell\), and \(2c > d - \ell > 0\) (as with Prisoner’s Dilemma game). It is easy to check that \(p = (0, \ldots, 0)\) is the unique Nash equilibrium of the stage game.

This payoff structure deserves comment. Observe, first, that actions are undirected, i.e., an individual cannot choose different actions toward each of the other \(n - 1\) group members. If payoffs were separable across directed levels of cooperation for each other member of the group, then each bilateral interaction would be a separate strategic problem, and so the results from the previous Section would suffice.

Second, to isolate the effect of intertemporal incentives, the stage payoffs should reflect a “size neutral” collective action problem. Otherwise, the stage payoffs may bias incentives toward either larger or smaller groups. The “size neutrality” requirement entails that payoffs be linear in one’s own action. The collective action (free rider) problem entails that payoffs are increasing in the aggregate cooperation of others, and decreasing in one’s own cooperation. Finally, the payoffs allow for nonzero cross derivatives between own and other’s actions (e.g., the payoff structure admits games of strategic substitutes). One can verify that the payoff in (7) therefore belongs to a "canonical class" defined by

\[
\pi_i = [A - p_i] F(\sum_{j \neq i} p_j) - Bp_i + C
\]

(8)

where \(A, B, C > 0\), and \(F\) is increasing in \(\sum_{j \neq i} p_j\). The payoff in (7) is a normalization of the case in which \(F\) is linear.

Third, the particular normalization used in (7) has a convenient interpretation. Payoffs and actions have been normalized so that the profile \(p\) can be interpreted as a profile of mixed strategies in a "generalized version" of Prisoner’s Dilemma for \(n\) players. To see this, suppose that there are two discrete actions, a “cooperative” action, \(C\), and an “uncooperative” one, \(D\). Let \(a_i \in \{C, D\}\), and let \(a = (a_1, \ldots, a_n)\) denote the pure action profile. If \(n = 2\), so that there are only two members in the group, then the payoffs are described by the (standard) Prisoner’s Dilemma game in Figure 1. If \(n \geq 2\), the pure strategy stage payoffs to a group
member \(i \) are given by

\[
 u_i(a) = \begin{cases}
 (q - 1)c - (n - q)\ell & \text{if } a_i = C \\
 qd & \text{if } a_i = D
 \end{cases}
\]

where \(q = |\{j = 1, \ldots, n : a_j = C\}| \) describes the number of individuals that choose \(C \). Hence, \(i \)'s payoff may be interpreted as the sum of the payoffs from each bilateral interaction from all other members of the group. Then the payoff in (7) corresponds to each player’s expected payoff when each member \(i = 1, \ldots, n \) chooses \(C \) with probability \(p_i \).

Because this mixed action interpretation of \(p \) requires that we assume mixed action histories are observable, the alternative interpretation in which \(p_i \) is the continuous level of some cooperative effort in a team problem, is probably more desirable. Nevertheless, we will occasionally find it more convenient to use the mixed action interpretation.

Letting \(p(t) \) denote the action profile taken in period \(t \), an individual’s dynamic payoff then is:

\[
 \sum_{t=0}^{\infty} (1 - \delta_i)^t \pi_i(p(t))
\]

where \(\delta_i \) denote the discount factor of member \(i \). Let \(\delta = (\delta_1, \ldots, \delta_n) \) denote the (arbitrary) profile of discount factors of the group.

3.2 Maximal Average Cooperation

We assume that the histories \((p(1), \ldots, p(t))\) are publically observable and restrict attention to stationary subgame perfect equilibria (SSPE). These are subgame perfect equilibria in which the same vector of actions are chosen each period. For now, we leave the discussion and implications of this restriction to Section 5. Because histories are publically observed, any SSPE path in this class of games can be implemented by an SSPE which uses simple “trigger strategies” in which any deviation is met with permanent reversion to the one shot, “uncooperative” equilibrium. Hence, there is no confusion when we refer to the stationary path profile, \(p \), as a stationary subgame perfect equilibrium (SSPE).\(^{10}\)

Let \(E(\delta) \) denote the set of SSPE profiles given \(\delta \). Our particular interest is in the profile \(p \) that solves

\[
 \max_{p \in E(\delta)} \frac{1}{n} \sum_{i=1}^{n} p_i
\]

\(^{10}\)The argument for why there is no loss of generality is standard: since the minmax payoff is 0, any equilibrium path remains an equilibrium path if it is enforced by the threat of permanent reversion to the one-shot equilibrium in which everyone in the group chooses “\(D \)” thereafter.
The optimal value of (9) is an action \(p^* \in [0, 1] \) that describes the maximal average cooperation (MAC) likelihood. In Section 4, the MAC likelihood will be denoted by \(p^*(n, \delta) \) to mark the explicit dependence on group’s size, \(n \), and characteristics, \(\delta \).

3.3 Characterizing the MAC Likelihood

Fix a type profile \(\delta \) and a stationary path, \(p(t) = p, \ \forall t \). Using (7), profile \(p \) describes a SSPE if and only if, for each \(i = 1, 2, \ldots, n \), \(0 \leq p_i \leq 1 \), and

\[
p_i \left(\sum_{j \neq i} p_j c + \sum_{j \neq i} (1 - p_j)(-\ell) \right) + (1 - p_i) \sum_{j \neq i} p_j d \geq (1 - \delta_i) \sum_{j \neq i} p_j d \tag{10}\]

The right hand side of (10) is the payoff from deviating and behaving uncooperatively. Since the punishment is permanent “uncooperative” behavior by all members, the deviant gains only in the initial period.

One can easily verify that if all other members cooperate fully, i.e., \(p_j = 1 \) for all \(j \neq i \), then member \(i \) should cooperate fully if

\[
\delta_i \geq (d - c)/d. \tag{11}\]

If (11) holds for all members of the group (which is the case examined by the Folk Theorem), then the problem of optimal cooperation is trivial (the MAC likelihood is 1). Consequently, the problem of optimal cooperation becomes interesting precisely when sufficiently conflicting time preferences exist.

Rewriting the Inequality in (10) and letting \(P_{-i} = \sum_{j \neq i} p_j \) yields

\[
p_i \left[\left(\frac{d - c}{d} - \frac{\ell}{d} \right) P_{-i} + (n - 1) \frac{\ell}{d} \right] \leq \delta_i P_{-i} \tag{12}\]

Now let \(\mu = \frac{d-c}{d} \) and \(\gamma = \frac{\ell}{d} \) (as in the previous Section). Parameter \(\mu \) is the relative gain to choosing the uncooperative action against a cooperative opponent. \(\gamma \) is the relative loss (against payoff \(d \)) if one is cooperative against an uncooperative opponent. Using these parameters, Inequality (12) can be combined with the constraint \(p_i \leq 1 \) to produce

\[
p_i \leq \min \left\{ 1, \frac{\delta_i}{\mu + \gamma \frac{(n-1) - P_{-i}}{P_{-i}}} \right\} \tag{13}\]

The following Lemma asserts that in any equilibrium that achieves the MAC likelihood, the slackness in (12) must come from the boundary condition \(p_i = 1 \). Another way of saying this is that the second Inequality, (13), must hold with equality.
Lemma 1 Let p denote a mixed action profile which describes a stationary, subgame perfect equilibrium (SSPE) path. Suppose that $p^* = \frac{1}{n} \sum_{i=1}^{n} p_i$, where p^* is the maximal average cooperation (MAC) likelihood. Then p satisfies (13) with equality for each individual i.

The proof of this and all other results are in the Appendix. Rewriting Equation (12) with parameters $\mu = \frac{d-c}{d}$ and $\gamma = \frac{c}{d}$ we obtain

$$p_i[(\mu - \gamma)P_{-i} + \gamma(n - 1)] \leq \delta_i P_{-i}$$ \hspace{1cm} (14)

Let $P = \sum_{i=1}^{n} p_i$ denote the aggregate likelihood of cooperation. Then add and subtract $p_i \delta_i$ to right hand side of (12) and add and subtract $p_i^2 [\mu - \gamma]$ to the left hand side of (12), to obtain the quadratic inequality

$$Q_i(p_i) \equiv (\mu - \gamma) p_i^2 - (P(\mu - \gamma) + \gamma(n - 1) + \delta_i) p_i + P\delta_i \geq 0$$ \hspace{1cm} (15)

The graph of the quadratic Q_i takes on one of two forms depending on whether $\mu < \gamma$ or $\mu > \gamma$. Figure 3 exhibits each of the two cases, respectively.

The following Lemma establishes necessary conditions for an equilibrium profile to yield a positive MAC likelihood. It requires from each individual either full cooperation ($p_i = 1$), or partial cooperation as determined by one of the roots of the quadratic expression in (15).

Lemma 2 Let p denote an SSPE such that $p^* = \frac{1}{n} \sum_{i=1}^{n} p_i$ is the MAC likelihood, and $P^* = np^*$. If $p^* > 0$ then for each member i,

$$p_i = \begin{cases}
R_i(P^*) & \text{if } \delta_i < \mu + \gamma \frac{n-P^*}{P^* - 1} \text{ or if } P^* < 1 \\
1 & \text{otherwise}
\end{cases}$$

where $R_i(P^*)$ is one of the two real roots of the quadratic function Q_i in Expression (15) and is given by

$$R_i(P^*) = \frac{P^*(\mu - \gamma) + \gamma(n - 1) + \delta_i - \sqrt{(P^*(\mu - \gamma) + \gamma(n - 1) + \delta_i)^2 - 4(\mu - \gamma)P^*\delta_i}}{2(\mu - \gamma)}$$

When $\mu < \gamma$, then $R_i(P)$ is the larger root of the quadratic in (15), and so from the first graph in Figure 3 it is clear that the maximal possible cooperation for i occurs either when $p_i = 1$ or when $p_i = R_i(P)$. When $\mu > \gamma$, then $R_i(P)$ is the smaller root of the
Figure 3: Quadratic Function $Q_i(p_i)$ for cases $\mu < \gamma$ and $\mu > \gamma$, respectively.
quadratic, and so from the second graph, the maximal cooperation once again occurs when either $p_i = 1$ or $p_i = R_i(P)$.

Now define $\psi_i : [0, n] \rightarrow [0, 1]$ to be the function that determines p_i in Lemma 2, i.e.,

$$
\psi_i(P) = p_i = \begin{cases}
R_i(P) & \text{if } \delta_i < \mu + \gamma \frac{n-P}{P-1} \text{ or if } P < 1 \\
1 & \text{otherwise}
\end{cases}
$$

(16)

For each member i, ψ_i is the response likelihood to aggregate cooperation P. Finally, let $\Psi : [0, n] \rightarrow [0, n]$ be the sum, over all members, of the response likelihoods to aggregate cooperation P. Formally,

$$
\Psi(P) = \sum_{i=1}^{n} \psi_i(P)
$$

(17)

Using the Lemmatta, our first result provides a fairly simple characterization of the MAC likelihood in terms of aggregate or average behavior.

Theorem 1 The MAC likelihood is given by

$$
p^* = \max \left\{ \frac{P}{n} \in [0, 1] : P = \Psi(P) \right\}
$$

(18)

where the solution to (18) is nonempty.

Moreover, $p^* > 0$ iff

$$
\sum_{i=1}^{n} \frac{\delta_i}{\gamma(n-1) + \delta_i} > 1
$$

(19)

According the result, the MAC likelihood is the largest fixed point of Ψ divided by n. The Proof in the Appendix shows, in fact, that Ψ has at most two fixed points, one of which, $P = 0$, always exists. The other is an interior fixed point, $P > 0$, which exists whenever (19) holds.

While the fixed point characterization is somewhat reminiscent of standard fixed point logic for static games, the derivations are obviously different. Rather than coming from a best response correspondence, Ψ is an aggregate equilibrium likelihood response along the equilibrium path of the repeated game.
4 Composition Effects

The Characterization Result (Theorem 1) will prove useful because it is easier to evaluate parametric changes in the fixed point mapping Ψ, than to evaluate these changes in the MAC likelihood directly. For example, if Ψ is increasing in δ, then it follows that the MAC likelihood is increasing in δ. The former is much easier to establish than the latter directly.

Theorem 2 Let $\delta' = (\delta'_i)$ and $\delta'' = (\delta''_i)$ denote two distinct profiles of discount factors, and let $p^*(n, \delta')$ and $p^*(n, \delta'')$ denote their respective MAC likelihoods.

Suppose either

1. $\delta' > \delta''$ or
2. δ'' is a mean preserving spread of δ' in the sense that

 \[
 \frac{1}{n} \sum_i \delta''_i = \frac{1}{n} \sum_i \delta'_i
 \]

 and for each member i, $\delta''_i \geq \delta'_i$ iff $\delta'_i \geq \frac{1}{n} \sum_i \delta'_i$.

Then $p^*(n, \delta'') \leq p^*(n, \delta')$, with strict inequality if $0 < p^*(n, \delta') < 1$.

The Proof shows that for each i, ψ_i is increasing and concave in δ_i. This establishes the first part. The second part then follows from a standard, second order stochastic dominance argument. Note that one cannot generally infer strict inequality between the two likelihoods since δ'' may already place all individuals in the region of full cooperation (i.e., $p_i = 1, \forall i$), and so further increases in δ have no effect.

The fact that average cooperation “increases” in each member’s patience is, of course, to be expected. However, the second part is less obvious. Increased heterogeneity increases the degree of social conflict. A group responds poorly to increased variability of time preferences among its members. The intuition, roughly, is that more patient individuals are less responsive to increases in patience than impatient ones. The effect of increasing a player’s discount factor is to increase the weight on future punishment following a deviation. For an already patient player, the effect of additional deterrence is small relative to that on an impatient individual.

5 Size Effects

The issue of scale of cooperation is more complicated. A corporate merger, for example, requires the merger of two groups of workers, each of a different size and each with different
characteristics. It is certainly possible for the merger to increase both the size and the social variability relative to each group. Hence, to isolate the effect of size alone, we consider the effect of increasing \(n \) while fixing the distribution on \(\delta \). The simplest construction replicates the group \(\alpha \) times, for some positive integer \(\alpha \).

A useful benchmark is the special case where discounting is homogeneous. In that case, Lemma 1 and (13) imply that SSPE profiles that determine the MAC likelihood are symmetric. Hence, the incentive constraint in (10) reduces to

\[
 p_i ((n - 1)pc + (n - 1)(1 - p)(-\ell)) + (1 - p_i)(n - 1)pd \geq (1 - \bar{\delta})(n - 1)pd
\]

where \(\bar{\delta} \) is the uniform discount factor. Obviously, the constraint is invariant to \(n \). Hence, the MAC likelihood is also invariant to \(n \), and is described by (6).

It will prove more helpful if the scale factor \(\alpha \) is treated as a continuous, rather than a discrete, variable. First, we write an individual’s response likelihood as \(\psi(P, n, \delta_i) \) to explicitly express the dependence on group size and on discount factor. Then, a group member’s marginal response to scale \(\alpha \) is given by

\[
 \frac{\partial \psi(\alpha P_n^*, \alpha n, \delta)}{\partial \alpha}
\]

where \(P_n^* \equiv np^*(n, \delta_n) \) is the maximal aggregate cooperation in the \(n \)-group. If this partial derivative is positive (negative), then member \(i \) increases (decreases) his contribution if both group size and its aggregate contribution is scaled up by \(\alpha < 1 \).

Theorem 3 Let \(p \) be a SSPE such that \(\frac{1}{n} \sum_i p_i = p^*(n, \delta) \). Then, for any scale factor \(\alpha > 1 \), and for any group member \(i = 1, \ldots, n \) with \(0 < p_i < 1 \),

\[
 \frac{\partial \psi(\alpha P_n^*, \alpha n, \delta)}{\partial \alpha} \begin{cases} > 0 & \text{if } \delta_i > p^*(n, \delta)\mu + [1 - p^*(n, \delta)]\gamma \\ = 0 & \text{if } \delta_i = p^*(n, \delta)\mu + [1 - p^*(n, \delta)]\gamma \\ < 0 & \text{if } \delta_i < p^*(n, \delta)\mu + [1 - p^*(n, \delta)]\gamma \end{cases}
\]

In words, the sign of a member \(i \)’s marginal response to scale \(\alpha \) depends on whether or not his discount factor lies above the threshold \(p^*(n, \delta)\mu + [1 - p^*(n, \delta)]\gamma \). Since the scale factor \(\alpha \) does not appear in (21), an individual’s marginal response to scale is positive or negative independent of the change in scale. Of course, the magnitude of one’s marginal...
response does depend on the magnitude of the change in scale. Hence, if every member of an
\(n \)-group is above the threshold (21), then the aggregate response to a change in group size
is positive. Similarly, if no group member is above the threshold (21), then the aggregate
response is negative.

Figure 4 below displays two individual marginal responses to scale, each graphed as a
function of \(\delta \). The first graph corresponds to a scale factor \(\alpha = 2 \) while in the second,
\(\alpha = 10 \). Parameter values are \(n = 80, P = 30, \mu = (d - c)/d = .6 \), and \(\gamma = \ell/d = .5 \). Notice
that each of the graphs cross the \(\delta \) axis at \(p^*(n, \delta)\mu + [1 - p^*(n, \delta)]\gamma = (30/80).6 + (50/80).5 = .5375 \).

\[
\begin{align*}
\text{Marginal Response to Scale for } \alpha = 2 \\
\text{Marginal Response to scale for } \alpha = 10
\end{align*}
\]

Figure 4

Recall that the MAC likelihood exhibits increasing (decreasing) returns at scale factor
\(\alpha \) if
\[
p^*(\alpha n, \delta^{\alpha n}) > (\leq) p^*(n, \delta^n) \tag{22}
\]
Inequality (22) can be expressed equivalently as \(P_{\alpha n}^* > (\leq) \alpha P_n^* \). Hence, increasing
(decreasing) returns to cooperation exist if maximal aggregate cooperation is superadditive
(subadditive).

An obvious corollary to the previous Theorem is:

Corollary Suppose \(0 < p^*(n, \delta) < 1 \). Then the MAC likelihood exhibits increasing (decreasing) returns at every scale factor \(\alpha > 1 \) if for every member \(i = 1, \ldots, n, \)
\[
\delta_i > (\leq) p^*(n, \delta)\mu + [1 - p^*(n, \delta)]\gamma \tag{23}
\]
The result would still hold if the hypothesis of the Corollary was weakened so that (23) held only for all "interior cooperators," i.e., all those for whom $0 < p_i < 1$. Even so, the requirement that individuals' discount factors all lie above (or below) some threshold is quite strong. It turns out that a natural asymmetry exists between the increasing and decreasing returns cases. To show increasing returns, one need only compare the average discount factor with the threshold.

Theorem 4 Fix an n-group with MAC likelihood $0 < p^*(n, \delta) < 1$. Order the discount factors in ascending order:

$$\delta_1 < \delta_2 < \cdots < \delta_n$$

and let i^* be the largest index i for which $\psi(P^*_n, n, \delta_i) < 1$ (i.e., the response likelihood of each member $i = 1, \ldots, i^*$ is less than one).

Then, if $\frac{n}{(n-1)^2} < \gamma < \mu$, and if

$$\frac{1}{i^*} \sum_{i=1}^{i^*} \delta_i > p^*(n, \delta) \mu + [1 - p^*(n, \delta)] \gamma,$$

(24)

then the MAC likelihood exhibits increasing returns to scale at every scale factor $\alpha > 1$.

According the Theorem, the MAC likelihood exhibits increasing returns to scale if both Inequality (24) and the inequalities $\frac{n}{(n-1)^2} < \gamma < \mu$ hold. The latter inequalities hold, in turn, if the initial group is large enough and if a "risk-dominance-like" condition holds. This "risk-dominance-like" condition, $\mu > \gamma$, is equivalent to $c + \ell < d$ in the stage game. In words, it entails that in each bilateral interaction, the relative loss from cooperating against an uncooperative member is smaller than the relative gain to deviating against a cooperative one. As for (24), the left hand side of (24) is the average discount factor among those who do not cooperate fully. The right hand side is the same threshold condition as in (21) which determines whether an individual’s marginal response to scale is positive or negative. Hence, (24) requires that the conditional average discount factor of the group is above this threshold.

Significantly, the Inequality (24) fails when discount factors are identical. In that case, the MAC likelihood, recall, is given by (6) which is invariant to size. One can check in that case that the left and right hand sides in (24) are equal, and so the marginal response to scale of every member is zero. Figure 5 exhibits returns to scale in the 2-member group. Constant returns occur in the "full cooperation" region and along the 45 degree line where discount factors are identical. Increasing returns occur where (24) holds. Decreasing returns occur where the threshold condition for both individuals fail or where it fails for one individual and the other is no longer an "interior" cooperator.
Δ1

γ

p∗µ + (1−p∗)γ

γ

45° line is CRS

Figure 5: Returns to Scale in the 2-Member Group

The proof combines the previous Theorem 3 with a convexity argument. Roughly, we prove that an individual’s marginal response to scale is convex as in Figure 4. A simple Jensen’s Inequality argument establishes that if the conditional average discount factor exceeds the threshold $p^*(n, \delta) \mu + [1 - p^*(n, \delta)] \gamma$ then the group’s marginal response to a change in scale is positive. Hence, the MAC likelihood exhibits returns to scale.

To get a better idea for why result applies only to increasing returns, consider two individuals, with discount factors δ_H, δ_L, respectively, with $\delta_H > \delta_L$. The high or patient type has a discount factor above the threshold: $\delta_H > p^*(n, \delta) \mu + [1 - p^*(n, \delta)] \gamma$. The impatient type lies below it. From (13) and Lemma 1, we know that an individual’s response is

$$p_i = \min \left\{ 1, \frac{\delta_i}{\mu + \gamma \frac{(n-1) - P_{-i}}{P_{-i}}} \right\} \quad (25)$$

if profile p yields the MAC likelihood. Clearly, p_i increases in one’s own discount factor, and decreases in one’s “cooperation ratio” $(n - 1 - P_{-i})/P_{-i}$, the ratio of uncooperative to cooperative behavior of others. In this two person case, the patient player faces a “cooperation ratio” of $(1 - p_L)/p_L$ while the impatient player faces $(1 - p_H)/p_H$. In this example, these ratios do not change if each player faces more players of the same opposing type. For example, if the patient player faced two impatient players, then his cooperation ratio, hence his equilibrium response, would not change. Generally, only relative, not absolute,
cooperation matters to each player. However, if the group size, say, doubles, then the patient individual faces another patient type as well as two impatient types. The patient player therefore faces a change in the distribution of types. If all others’ responses are scaled accordingly, then the patient player’s cooperation ratio is \((3-2p_L-p_H)/(2p_L+p_H)\) which is smaller than before. The patient player therefore responds positively. On the other hand, for the impatient player, his cooperation ratio increases, thereby decreasing his equilibrium response. Returns to scale exist if the positive response of the patient player exceeds the negative response of the impatient one. Indeed, it turns out that an impatient player’s marginal response to a change in scale is flatter than that of the patient player. The reason is simple. The incentive constraints measure current gains to deviating against future losses from punishment in the equilibrium continuation. The cooperation ratio \((n-1-P_i)/P_i\) is used to determine each member’s discounted average payoff in equilibrium. An impatient player is less responsive to changes in this ratio because he is less responsive to the changes in the resulting equilibrium path. Hence, although his cooperation ratio is inferior when the group size doubles, his response (as reflected in (25)) is ultimately dampened by his impatience.

6 Summary and Discussion

This paper studies cooperative behavior in a class of repeated, collective action games in which the stage game incentives are "size-neutral." We define and characterize the MAC likelihood which describes the maximal average level of cooperation of a group in a stationary equilibrium.

The focus on stationary equilibria has costs and benefits. On the cost side, the MAC likelihood may understate the success of the group. Lehrer and Pauzner show that non-stationary equilibria could conceivably give the group members higher payoffs than the stationary ones generated by maximal average cooperation. This is largely due to the fact that the feasible payoffs sets are different than that of the stage game. Improvements in the feasible set can result when time-heterogeneous individuals intertemporally “trade” payoffs.

The benefits to stationarity vary. One is the obvious tractability for the group members. Stationary equilibria facilitates objective measurement of the group by an outside observer. This is especially relevant if the group is externally compensated. Nonstationary equilibria present problems for measurement since it is unclear how cooperation early in the game should be weighted against cooperation later if there is no common discount factor. A second benefit to stationarity is that it allows for comparisons across groups of differing composition. Stationary equilibria allow the members (and the outside observer) to isolate the effect of equilibrium (as opposed to feasible) behavior because the feasible payoff set remains constant across all profiles δ.
With these caveats, the MAC likelihood reveals some unexpected properties of group cooperation in repeated games. In particular it exposes the way in which cooperation depends on the size and structure of the group. More homogeneous groups are, ceteris paribus, shown to be more cooperative, and under certain conditions, larger groups are more cooperative as well.

The results do not, of course, imply that social planners should construct purely homogeneous groups. Nor should they attempt to build groups of arbitrarily large size. Returns to homogeneity may be balanced by benefits to diversity along other dimensions. Returns to size may be balanced by increasing costs of retaining individuals in larger groups. Moreover, the assumption of perfect monitoring in the model is probably harder to justify with larger groups. Depending on the game, imperfect monitoring may bound the group away from the Pareto frontier. Finally, it may not be possible to keep constant the distribution of types when adding to the group. Our results say little about how mergers of distinctly different groups perform.

Interest in group performance in collective action problems date back at least to Olson (1965). We offer one possible antitode to a commonly expressed view that larger groups are less effective at resolving free rider problems. If this view is correct, then at least the results help to clarify, by process of elimination, why this should be so.

The paper is best viewed as provisional. Presumably, the MAC likelihood is well defined in stage games for which a natural ordering exists for all players’ action sets from the less to more “cooperative” actions. Whether the results extend more broadly in this class of games remains an open question.

7 Appendix

Proof of Lemma 1 Define the map \(f : [0, 1]^n \to [0, 1]^n \) by \(f(p) = (f_1(p), \ldots, f_n(p)) \) where

\[
 f_i(p_{-i}) = \min \left\{ 1, \frac{\delta_i}{\mu + \gamma \frac{(n-1) - p_{-i}}{p_{-i}}} \right\}
\]

for each \(i = 1, \ldots, n \). Now fix a profile \(p \) according to the hypothesis. Then

\[
p \leq f(p)
\]

Suppose that (13) holds with slack for individual \(i = 1 \). Then \(p_1 < f_1(p_{-1}) \). We now construct an alternative SSPE, \(p' \), i.e., a profile satisfying \(p' \leq f'(p') \), and such that \(p'_i \geq p_i \) for all \(i \) and \(p'_1 > p_1 \). First take \(\epsilon > 0 \) sufficiently small such that \(p'_1 = p_1 + \epsilon < f_1(p_{-1}) \). Then let \(p'_i = p_i \) for each \(i \neq 1 \). Now since \(f_i \) is nondecreasing in \(p_{-i} \) for all \(i \), it follows that

\[
p'_i < f(p'_{-i})
\]
Hence, \(p' \) is a SSPE. However,
\[
\frac{1}{n} \sum_{i=1}^{n} p'_i > \frac{1}{n} \sum_{i=1}^{n} p_i.
\]
which contradicts the assertion that \(p \) achieves the MAC likelihood.

\[\text{Proof of Lemma 2}\]

Fix any \(P > 0 \). Let \(A = \mu - \gamma \), \(B = -[P(\mu - \gamma) + \gamma(n - 1) + \delta_i] \) and \(C = P\delta_i > 0 \). The quadratic in \(p_i \) has the form,
\[
Ap_i^2 + Bp_i + C \geq 0
\] (27)

We first show that the roots of (27) are real. The discriminant of the root in (27) is \(\sqrt{B^2 - 4AC} \) where
\[
B^2 - 4AC = (-[P(\mu - \gamma) + \gamma(n - 1) + \delta_i])^2 - 4(\mu - \gamma)P\delta_i
\]

Case 1: \(\mu < \gamma \)
\[
\mu < \gamma \Rightarrow (\mu - \gamma) < 0 \Rightarrow -4(\mu - \gamma)P\delta_i > 0.
\]
Since \(B^2 \geq 0 \) for all \(B \), we have that \(B^2 - 4AC > 0 \) and so the roots are real.

Case 2: \(\mu > \gamma \)
\[
B^2 - 4AC = (-[P(\mu - \gamma) + \gamma(n - 1) + \delta_i])^2 - 4(\mu - \gamma)P\delta_i
\]
\[
= P^2(\mu - \gamma)^2 + \gamma^2(n - 1)^2 + \delta_i^2 + 2P(\mu - \gamma)\gamma(n - 1) + 2P(\mu - \gamma)\delta_i + 2\gamma(n - 1)\delta_i
\]
\[
= P^2(\mu - \gamma)^2 + \gamma^2(n - 1)^2 + \delta_i^2 + 2P(\mu - \gamma)\gamma(n - 1) - 2P(\mu - \gamma)\delta_i + 2\gamma(n - 1)\delta_i
\]
\[
= (P(\mu - \gamma) - \delta_i)^2 + \gamma^2(n - 1)^2 + 2P(\mu - \gamma)\gamma(n - 1) + 2\gamma(n - 1)\delta_i > 0.
\]
Therefore, the roots are real.

Now define \(Q(p_i) = Ap_i^2 + Bp_i + C \) as the quadratic in Equation (27). By the assumption that \(p^* > 0 \), it follows that \(P > 0 \), and so \(C > 0 \). Then \(Q(0) = C > 0 \). To begin, let \(P \geq 1 \) and consider the following two cases: (a) \(\mu > \gamma \) and (b) \(\mu < \gamma \).\(^{11}\)

Case (a): in case (a), we have \(A > 0 \) and \(B < 0 \). \(Q'(p) = 2Ap_i + B \) and therefore \(Q'(0) < 0 \). Since \(A > 0 \) and from Proposition (1), we have two positive real roots.

\(^{11}\)If \(\mu = \gamma \), Equation (27) no longer yields a quadratic equation. The solution becomes \(\psi_i(\delta_i, P) = \)
\[
-\frac{C}{P} \quad \text{if } \delta_i < \frac{d-c}{n} + \frac{P}{2n-1} \text{ and } \frac{d-c}{n} + \frac{P}{2n-1} \quad \text{otherwise}
\]
We do not focus on this case, since it occurs only when \(c = d - \ell \).
By the previous Lemma, p_i must be the maximum value in $[0, 1]$ consistent with $Q(p_i) \geq 0$. That is,

$$p_i = \max\{p'_i \in [0, 1] : Q(p'_i) \geq 0\}$$

Then $p_i < 1$ is a solution iff the lower root of Q is less than 1 while the greater root of Q is greater than 1.

In other words:

$$-\frac{B - \sqrt{B^2 - 4AC}}{2A} < 1 < -\frac{B + \sqrt{B^2 - 4AC}}{2A}$$

Since $A > 0$, we can write this as:

$$-B - \sqrt{B^2 - 4AC} < 2A < -B + \sqrt{B^2 - 4AC}$$

$$\Leftrightarrow -\sqrt{B^2 - 4AC} < 2A + B < \sqrt{B^2 - 4AC}$$

$$\Leftrightarrow |2A + B| < \sqrt{B^2 - 4AC}$$

$$\Leftrightarrow (2A + B)^2 < B^2 - 4AC$$

$$\Leftrightarrow 4A^2 + 4AB + B^2 < B^2 - 4AC$$

$$\Leftrightarrow 4A^2 + 4AB < -4AC$$

$$\Leftrightarrow A + B + C < 0$$

$$\Leftrightarrow (\mu - \gamma) - (P(\mu - \gamma) + \gamma(n - 1) + \delta_i) + P\delta_i < 0$$

$$\Leftrightarrow \delta_i < \mu - \gamma + \gamma \frac{n - 1}{P - 1}$$

$$\Leftrightarrow \delta_i < \frac{d - c}{d} + \frac{\ell \frac{n - P}{P - 1}}{d}$$

Hence, $p_i = R_i(P)$ whenever $\delta_i < \frac{d - c}{d} + \frac{\ell \frac{n - P}{P - 1}}{d}$. This concludes Case (a).

Case (b): in case (b), we have that $\mu < \gamma$, so $A < 0$. Since $Q(0) > 0$ and from the first part of the Proof, we must have one negative real root and one positive real root. In that case, $p_i < 1$ is a solution to

$$\max\{p'_i \in [0, 1] : Q(p'_i) \geq 0\}$$

iff the greater root of Q is less than 1.\footnote{Note that when $A < 0$, the greater root is $-B - \sqrt{B^2 - 4AC}$.} In other words,

$$-\frac{B - \sqrt{B^2 - 4AC}}{2A} < 1.$$
Since $A < 0$, we can write this as:

\[-B - \sqrt{B^2 - 4AC} > 2A\]

\[\Leftrightarrow -\sqrt{B^2 - 4AC} > 2A + B\]

\[\Leftrightarrow \sqrt{B^2 - 4AC} < -(2A + B)\]

\[\Leftrightarrow B^2 - 4AC < 4A^2 + 4AB + B^2\]

\[\Leftrightarrow 4A^2 + 4AB + 4AC < 0\]

\[\Leftrightarrow A + B + C < 0 \quad \text{(since} \ A < 0)\]

\[\Leftrightarrow \delta_i < \frac{d+c}{a} + \frac{\ell}{d} \frac{n-1}{P-1}.\]

Hence, as with Case (a), $p_i = R_i(P)$ whenever $\delta_i < \frac{d+c}{a} + \frac{\ell}{d} \frac{n-1}{P-1}$. This concludes Case (b).

Finally, we note that when $P < 1$, the constraint that binds is no longer that $p_i \leq 1$, but rather that $p_i \leq P$. \hfill \Box

Proof of Theorem 1 The proof proceeds in three steps. First, we show that Ψ is increasing. Second, we prove Ψ is concave. Third, we prove that $\frac{\partial \Psi}{\partial P} \bigg|_{P=0} > 1$ whenever \[\sum_{i=1}^{n} \delta_i > 1\] holds.

(i) Show that Ψ is increasing. Observe, first, that $\mu + \frac{\gamma(n-1)}{P-1}$ is decreasing in P. Given (16), this means that the cutoff value above which $\psi_i = 1$ is decreasing. Given (16) and (17), it therefore suffices to show that for each i, and each δ_i, $R_i(P)$ is increasing in P. Recall:

\[R_i(P) = \frac{-B - \sqrt{B^2 - 4AC}}{2A} + \frac{\delta_i}{P(\mu - \gamma) + \gamma(n-1) + \delta_i - \sqrt{(P(\mu - \gamma) + \gamma(n-1) + \delta_i)^2 - 4(\mu - \gamma)^2}}{2(\mu - \gamma)}\]

Therefore

\[\frac{\partial R}{\partial P} = \frac{\partial (-B/2A)}{\partial P} - \frac{\partial (B^2 - 4AC)^{1/2}/(2A)^{-1}}{\partial P}\]

Now observe that A does not vary with P, and $\frac{\partial (-B/2A)}{\partial P} = 1/2$. Hence, it suffices to show $\frac{\partial (B^2 - 4AC)^{1/2}/(2A)^{-1}}{\partial P} < 1/2$, or, equivalently,

\[\frac{1}{A} \frac{\partial (B^2 - 4AC)^{1/2}}{\partial P} < 1.\]
Rewriting (30) gives
\[\frac{1}{A}(B^2 - 4AC)^{-1/2}(B \frac{\partial B}{\partial P} - 2AC \frac{\partial C}{\partial P}) < 1 \]
Since \(\frac{\partial B}{\partial P} = A \), we have
\[(B - 2 \frac{\partial C}{\partial P})^2 < (B^2 - 4AC) \]
or
\[B \frac{\partial C}{\partial P} > AC \]
But substituting for \(A, B \), and \(C \) gives
\[(P(\mu - \gamma) + \gamma(n - 1) + \delta_i)\delta_i > P(\mu - \gamma)\delta_i \]
which is easily confirmed to hold. Hence, (30) holds and so \(\partial \Psi / \partial P \geq 0 \).

(ii) Show that \(\Psi \) is concave. It suffices to show that \(\frac{\partial^2 R}{\partial P^2} < 0 \). Given (29) and the fact that \(\frac{\partial^2 B}{\partial P^2} = 0 \) it is necessary to show
\[\frac{\partial}{\partial P}[(B^2 - 4AC)^{-1/2}(B - 2 \frac{\partial C}{\partial P})] > 0 \] (31)
Utilizing the fact that \(\frac{\partial B}{\partial P} = -A \) and \(\frac{\partial^2 C}{\partial P^2} = 0 \), (31) holds iff
\[(B^2 - 4AC) > (B + 2 \frac{\partial C}{\partial R})(B + 2 \frac{\partial C}{\partial R}) \]
Simplifying further:
\[-AC > B \frac{\partial C}{\partial P} + (\frac{\partial C}{\partial P})^2 \]
Substituting for \(A, B, \) and \(C \), yields
\[-(\mu - \gamma)P\delta_i > -(P(\mu - \gamma) + \gamma(n - 1) + \delta_i)\delta_i + \delta_i^2 \]
which, finally, simplifies to \(\gamma(n - 1) > 0 \). Since \(\gamma = \ell/d > 0 \), this condition must hold. Hence, \(\Psi \) is concave.

(iii) Verify that \(\partial \Psi / \partial P \bigg|_{P=0} > 1 \) under the stated hypothesis. Observe that a necessary and sufficient condition for this is:
\[\sum_{i=1}^{n} \frac{\partial R_i}{\partial P} \bigg|_{P=0} > 1 \]
since the derivatives are evaluated in a neighborhood of 0 where the value of each ψ_i coincides with the root R_i. Observe

$$\left.\frac{\partial R_i}{\partial P}\right|_{P=0} = \frac{1}{2} - \frac{1}{2} \left[\frac{\gamma(n-1) - \delta_i}{\gamma(n-1) + \delta_i} \right]$$

Consequently, $\left.\frac{\partial \Psi}{\partial P}\right|_{P=0} > 1$ holds if and only if

$$\sum_{i=1}^{\ n} \left(\frac{1}{2} - \frac{1}{2} \left[\frac{\gamma(n-1) - \delta_i}{\gamma(n-1) + \delta_i} \right] \right) > 1$$

or, equivalently,

$$\sum_{i=1}^{\ n} \frac{\delta_i}{\gamma(n-1) + \delta_i} > 1$$

which was assumed in the hypothesis. Since Ψ is increasing, concave, and differentiates above 1 in a neighborhood of 0, it must have a unique, interior fixed point. ♦

Proof of Theorem 2 Write $\Psi(P, n, \delta)$ to express the explicit dependence on size n and structure, δ. By standard results for second order stochastic dominance, it suffices to show that for each i, ψ_i is increasing and concave in δ_i and strictly concave if $\delta_i' < \mu + \gamma \frac{n-1}{P-1}$. To show ψ_i is increasing, we use the previous construction in (28). Then $\frac{\partial R}{\partial \delta_i} > 0$ iff

$$-C > \frac{\partial C}{\partial \delta_i} B + A \left(\frac{\partial C}{\partial \delta_i} \right)^2$$

Substituting for A, B, and C gives

$$-P\delta_i > -P(P(\mu - \gamma) + \gamma(n-1) + \delta_i) + P^2(\mu - \gamma)$$

or $\gamma(n-1) > 0$ which always holds. Hence, Ψ is increasing in δ_i.

To show Ψ is concave, observe that $\frac{\partial^2 R}{\partial \delta_i^2} < 0$ iff

$$-C > \frac{\partial C}{\partial \delta_i} B + A \left(\frac{\partial C}{\partial \delta_i} \right)^2$$

which is exactly the condition determining monotonicity for ψ_i. Just as before, Substituting for A, B, and C gives

$$-P\delta_i > -P(P(\mu - \gamma) + \gamma(n-1) + \delta_i) + P^2(\mu - \gamma)$$

or $\gamma(n-1) > 0$ which always holds. Therefore, ψ_i is strictly concave if $\delta_i < \mu + \gamma \frac{n-1}{P-1}$. But if $p^*(n, \delta') < 1$, it follows from Lemma 2 that for at least one individual i, $\delta_i < \mu + \gamma \frac{n-1}{P-1}$ where $P = np^*(n, \delta')$. In this instance, Ψ is strictly concave, and so $p^*(n, \delta'') < p^*(n, \delta')$. 26
We conclude that mean preserving spreads of \(\delta \) decrease the MAC likelihood, and strictly decrease in whenever \(p^*(n, \delta') < 1 \).

\[\diamond \]

Proof of Theorem 3 From the Proof of Lemma 2, \(\psi(\alpha P^*_n, \alpha n, \delta_i) = 1 \) iff \(\delta_i \geq \mu + \gamma \frac{\alpha(n-P^*_n)}{\alpha P^*_n - 1} \).

Notice that \(\mu + \gamma \frac{\alpha(n-P^*_n)}{\alpha P^*_n - 1} > \frac{P^*_n}{n} \mu + (1 - \frac{P^*_n}{n}) \gamma \). Hence, it is without loss of generality if we consider \(\delta_i \) such that

\[
\frac{P^*_n}{n} \mu + (1 - \frac{P^*_n}{n}) \gamma < \delta_i < \mu + \gamma \frac{\alpha(n-P^*_n)}{\alpha P^*_n - 1}
\]

Then \(\psi(\alpha P^*_n, \alpha n, \delta_i) < 1 \) so that

\[
\frac{\partial \psi(\alpha P^*_n, \alpha n, \delta_i)}{\partial \alpha} = \frac{\partial R(\alpha P^*_n, \alpha n, \delta_i)}{\partial \alpha}
\]

where \(R(\cdot) \) is the quadratic root defined in (2) in Lemma 2.

Holding fixed \(\delta_i \), we have, for any \(P \),

\[
R^*(P, n, \alpha) \equiv R(\alpha P_n, \alpha n, \delta_i) = \frac{\alpha P(\mu - \gamma) + \gamma (\alpha n - 1) + \delta_i - \sqrt{(\alpha P(\mu - \gamma) + \gamma (\alpha n - 1) + \delta_i)^2 - 4(\mu - \gamma)\alpha P\delta_i}}{2(\mu - \gamma)} = \frac{-B(\alpha)}{A} - \frac{\sqrt{B(\alpha)^2 - 4AC(\alpha)}}{A}
\]

Then

\[
\frac{\partial R^*}{\partial \alpha} = \frac{\partial (-B(\alpha)/2A)}{\partial \alpha} - \frac{\partial ((B(\alpha))^2 - 4AC(\alpha))^{1/2}(2A)^{-1}}{\partial \alpha}
\]

and so \(\frac{\partial R^*}{\partial \alpha} > 0 \) iff

\[
\frac{1}{2A} \left[\frac{\partial B}{\partial \alpha} - \frac{B^2}{(B^2 - 4AC)^{-1/2}(B \frac{\partial B}{\partial \alpha} - 2A \frac{\partial C}{\partial \alpha})} \right] > 0.
\]

With some algebra and substitution, this Inequality is equivalent to

\[
\frac{1}{2A} \left[B \frac{\partial B}{\partial \alpha} - \alpha \left(\frac{\partial B}{\partial \alpha} \right)^2 + A \frac{\partial C}{\partial \alpha} \right] > 0
\]

Substituting for \(A, B, \) and \(C \), differentiating with respect to \(\alpha \) where appropriate, and re-arranging terms yields,

\[
\delta_i > \frac{P}{n} (\mu - \gamma) + \gamma
\]
which is the requisite threshold condition whenever P satisfies $\frac{P}{n} = p^*(n, \delta)$.

\textbf{Proof of Theorem 4} The proof is in several steps. First, we show that

$$\frac{\partial \psi}{\partial \alpha} > 0, \forall \alpha > 1.$$

In other words, the marginal response $\frac{\partial \psi}{\partial \alpha}$ is convex in δ_i. Then, using Jensen’s inequality, we can show that if the conditional average of discount factors is above the threshold given, there are returns to scale.

Using Young’s Theorem, we can first take the partial derivatives with respect to δ_i and then with respect to α.

\[
\frac{\partial \psi}{\partial \delta_i} = \frac{1}{2A} \left[1 - (B^2 - 4AC)^{-\frac{3}{2}} \left(B \frac{\partial B}{\partial \delta_i} - 2A \frac{\partial C}{\partial \delta_i} \right) \right]
\]

Since $\frac{\partial B}{\partial \delta_i} = -1$, we can rewrite this as:

\[
\frac{\partial \psi}{\partial \delta_i} = \frac{1}{2A} \left[1 + (B^2 - 4AC)^{-\frac{3}{2}} \left(B + 2A \frac{\partial C}{\partial \delta_i} \right) \right]
\]

Then, the second partial with respect to δ_i is:

\[
\frac{\partial^2 \psi}{\partial \delta_i^2} = \frac{1}{2A} \left[(B^2 - 4AC)^{-\frac{3}{2}} \left(B + 2A \frac{\partial C}{\partial \delta_i} \right)^2 - (B^2 - 4AC)^{-\frac{3}{2}} \right]
\]

Factoring out $(B^2 - 4AC)^{-\frac{3}{2}}$ yields:

\[
\frac{\partial^2 \psi}{\partial \delta_i^2} = \frac{1}{2A} \left(B^2 - 4AC \right)^{-\frac{3}{2}} \left[\left(B + 2A \frac{\partial C}{\partial \delta_i} \right)^2 - (B^2 - 4AC) \right]
\]

Multiplying out the squared term and factoring out $4A$ then gives:

\[
\frac{\partial^2 \psi}{\partial \delta_i^2} = \frac{1}{2A} \left(B^2 - 4AC \right)^{-\frac{3}{2}} 4A \left[B \frac{\partial C}{\partial \delta_i} + A \left(\frac{\partial C}{\partial \delta_i} \right)^2 + C \right]
\]

or,

\[
\frac{\partial^2 \psi}{\partial \delta_i^2} = 2 \left(B^2 - 4AC \right)^{-\frac{3}{2}} \left[B \frac{\partial C}{\partial \delta_i} + A \left(\frac{\partial C}{\partial \delta_i} \right)^2 + C \right]
\]

Finally, taking the partial derivative with respect to α yields:

\[
\frac{\partial^3 \psi}{\partial \delta_i^2 \partial \alpha} = -3 \left(B^2 - 4AC \right)^{-\frac{3}{2}} \left(2B \frac{\partial B}{\partial \alpha} - 4A \frac{\partial C}{\partial \alpha} \right) \left[B \frac{\partial C}{\partial \delta_i} + A \left(\frac{\partial C}{\partial \delta_i} \right)^2 + C \right]
\]

\[
+ 2 \left(B^2 - 4AC \right)^{-\frac{3}{2}} \left[\frac{\partial B}{\partial \alpha} \frac{\partial C}{\partial \delta_i} + B \frac{\partial \delta_i}{\partial \alpha} + 2A \frac{\partial C}{\partial \delta_i} \frac{\partial}{\partial \delta_i} + \frac{\partial C}{\partial \alpha} \right]
\]
By Young's Theorem, we know that \(\frac{\partial^3 \psi}{\partial \delta^2 \partial \alpha} = \frac{\partial^3 \psi}{\partial \alpha \partial \delta^2} \). We want to know when \(\frac{\partial^3 \psi}{\partial \alpha \partial \delta^2} > 0 \). From the above equation, we can add the first term to the right hand side and factor out a 2.

\[
+2(B^2 - 4AC)^{-\frac{3}{2}} \left[\frac{\partial B}{\partial \alpha \partial \delta_i} + B \frac{\partial C}{\partial \delta_i \partial \alpha} + 2A \frac{\partial C}{\partial \delta_i \partial \delta_i \partial \alpha} + \frac{\partial C}{\partial \alpha} \right]
\]

\[
> 6(B^2 - 4AC)^{-\frac{3}{2}} (B \frac{\partial B}{\partial \alpha} - 2A \frac{\partial C}{\partial \alpha}) \left[B \frac{\partial C}{\partial \delta_i} + A \left(\frac{\partial C}{\partial \delta_i} \right)^2 + C \right]
\]

Multiplying both sides by \(\frac{1}{2}(B^2 - 4AC)^{-\frac{3}{2}} \) yields:

\[
(B^2 - 4AC) \left[\frac{\partial B}{\partial \alpha \partial \delta_i} + B \frac{\partial C}{\partial \delta_i \partial \alpha} + 2A \frac{\partial C}{\partial \delta_i \partial \delta_i \partial \alpha} + \frac{\partial C}{\partial \alpha} \right]
\]

\[
> 3 \left(B \frac{\partial B}{\partial \alpha} - 2A \frac{\partial C}{\partial \alpha} \right) \left[B \frac{\partial C}{\partial \delta_i} + A \left(\frac{\partial C}{\partial \delta_i} \right)^2 + C \right]
\]

Substituting in for \(A = \mu - \gamma, B = - (\alpha P(\mu - \gamma) + \alpha \gamma n + \delta_i - \gamma), B = \alpha P \delta_i \) and \(\frac{\partial B}{\partial \alpha} = - (P(\mu - \gamma) + \gamma n), \frac{\partial C}{\partial \alpha} = \alpha P, \frac{\partial C}{\partial \delta_i} = P \delta_i \) and rearranging terms yields:

\[
\alpha^2 (\alpha n - 2) (P(\mu - \gamma) + \gamma n)^2 + \alpha (\alpha n + 1) (\gamma (P(\mu - \gamma) + \gamma n) + P(\mu - \gamma) \delta_i)
\]

\[
> \alpha (\alpha n + 1) \gamma n \delta_i + (2\alpha n - 1)(\delta_i - \gamma)^2
\]

Squaring the first term and noting that \((\delta_i - \gamma)^2 < \gamma^2 \) yields:

\[
\alpha^2 (\alpha n - 2) (P^2(\mu - \gamma)^2 + 2P(\mu - \gamma) \gamma n + \gamma^2 n^2) + \alpha (\alpha n + 1) (\gamma P(\mu - \gamma) + \gamma^2 n + P(\mu - \gamma) \delta_i)
\]

\[
> \alpha (\alpha n + 1) \gamma n \delta_i + (2\alpha n - 1) \gamma^2
\]

Since \(\mu > \gamma \), we can rearrange terms as:

\[
\alpha^2 (\alpha n - 2) (P^2(\mu - \gamma)^2 + 2P(\mu - \gamma) \gamma n) + \alpha (\alpha n + 1) (\gamma P(\mu - \gamma) + P(\mu - \gamma) \delta_i)
\]

\[
+ \alpha^2 (\alpha n - 2) n^2 \gamma^2 + \alpha (\alpha n + 1) \gamma^2 n - (2\alpha n - 1) \gamma^2
\]

\[
> \alpha (\alpha n + 1) \gamma n \delta_i
\]

or

\[
[\alpha^2 (\alpha n - 2) n^2 + \alpha (\alpha n + 1) n - (2\alpha n - 1)] \gamma^2 > \alpha (\alpha n + 1) \gamma n \delta_i
\]

Dividing by \(\gamma \) and multiplying out the bracketed term yields:

\[
[\alpha^3 n^3 - 2\alpha^2 n^2 + \alpha^2 n^2 + \alpha n - 2\alpha n + 1] \gamma > \alpha (\alpha n + 1) \delta_i
\]
Factoring yields:

\[(an + 1)(an - 1)^2 \gamma > an(an + 1)\delta_i\]

Dividing by \((an + 1)\) and noting that \(\delta_i < 1\), we can write this as:

\[\gamma > \frac{an}{(an - 1)^2}\]

The derivative with the right-hand side with respect to \(\alpha\) is negative for \(\alpha \geq 1\), thus we can take as a sufficient condition that \(\alpha = 1\) and thus \(\frac{\partial \psi}{\partial \alpha}\) is convex if \(\gamma > \frac{n}{(n - 1)^2}\).

Using Jensen’s Inequality and the threshold conditional average condition, it follows that

\[
\frac{\partial \Psi(\alpha P^*_n, an, \delta^n)}{\partial \alpha} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \psi(\alpha P^*_n, an, \delta_i)}{\partial \alpha} + \frac{\partial \psi(\alpha P^*_n, an, \delta_{i^*})}{\partial \alpha} + 0
\]

\[
> \frac{\partial \psi(\alpha P^*_n, an, \frac{1}{n} \sum_{i=1}^{n} \delta_i)}{\partial \alpha}
\]

\[> 0\]

The first inequality is a straightforward application of Jensen’s Inequality. The second follows from Theorem 3. Consequently,

\[
\frac{\partial \Psi(\alpha P^*_n, an, \delta^n)}{\partial \alpha} > 0.
\]

Because \(\Psi\) is increasing in \(\alpha\), it follows that

\[\Psi(\alpha P^*_n, an, \delta^n) > \Psi(\alpha P^*_n, an, \delta^n) = P^*_n\]

30
Now letting \(\alpha \) be an integer,

\[
0 < \alpha (\Psi(\alpha P^*_n, \alpha n, \delta^n) - P^*_n)
\]

\[
= \alpha \Psi(\alpha P^*_n, \alpha n, \delta^n) - \alpha P^*_n
\]

\[
= \alpha \sum_{i=1}^{n} \psi(\alpha P^*_n, \alpha n, \delta_i) - \alpha P^*_n
\]

\[
= \sum_{j=1}^{\alpha n} \psi(\alpha P^*_n, \alpha n, \delta_j) - \alpha P^*_n
\]

\[
= \Psi(\alpha P^*_n, \alpha n, \delta^{\alpha n}) - \alpha P^*_n
\]

Now since \(P^*_{\alpha n} \) is the maximal aggregate likelihood of the \(\alpha n \)-group, it follows that

\[
\Psi(P^*_{\alpha n}, \alpha n, \delta^{\alpha n}) = P^*_{\alpha n}.
\]

Since \(\Psi \) is increasing and concave in \(P \) (see Proof of Theorem 1), the difference \(\Psi(P, \alpha n, \delta^{\alpha n}) - P \) must be decreasing in \(P \). Therefore, \(P^*_{\alpha n} > \alpha P^*_n \) which means that the MAC likelihood exhibits increasing returns. We conclude the proof. ◊◊

References

<table>
<thead>
<tr>
<th>Series</th>
<th>Date</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUST</td>
<td>1.2002</td>
<td>K. TANO, M.D. FAMINOW, M. KAMUANGA and B. SWALLOW</td>
<td>Using Conjoint Analysis to Estimate Farmers’ Preferences for Cattle Traits in West Africa</td>
</tr>
<tr>
<td>ETA</td>
<td>2.2002</td>
<td>Efrem CASTELNUOVO and Paolo SURICO</td>
<td>What Does Monetary Policy Reveal about Central Bank’s Preferences?</td>
</tr>
<tr>
<td>WAT</td>
<td>3.2002</td>
<td>Duncan KNOWLER and Edward BARBIER</td>
<td>The Economics of a “Mixed Blessing” Effect: A Case Study of the Black Sea</td>
</tr>
<tr>
<td>CLIM</td>
<td>4.2002</td>
<td>Andreas LöSCHEL</td>
<td>Technological Change in Economic Models of Environmental Policy: A Survey</td>
</tr>
<tr>
<td>VOL</td>
<td>5.2002</td>
<td>Carlo CARRARO and Carmen MARCHIORI</td>
<td>Stable Coalitions</td>
</tr>
<tr>
<td>KNOW</td>
<td>8.2002</td>
<td>Alain DESDOIGTS</td>
<td>Neoclassical Convergence Versus Technological Catch-up: A Contribution for Reaching a Consensus</td>
</tr>
<tr>
<td>NRM</td>
<td>9.2002</td>
<td>Giuseppe DI VITA</td>
<td>Renewable Resources and Waste Recycling</td>
</tr>
<tr>
<td>KNOW</td>
<td>10.2002</td>
<td>Giorgio BRUNELLO</td>
<td>Is Training More Frequent when Wage Compression is Higher? Evidence from 11 European Countries</td>
</tr>
<tr>
<td>ETA</td>
<td>11.2002</td>
<td>Mordecai KURZ, Hehui JIN and Maurizio MOTOLESE</td>
<td>Endogenous Fluctuations and the Role of Monetary Policy</td>
</tr>
<tr>
<td>KNOW</td>
<td>12.2002</td>
<td>Reyer GERLAGH and Marjan W. HOFKES</td>
<td>Escaping Lock-in: The Scope for a Transition towards Sustainable Growth?</td>
</tr>
<tr>
<td>NRM</td>
<td>13.2002</td>
<td>Michele MORETTO and Paolo ROSATO</td>
<td>The Use of Common Property Resources: A Dynamic Model</td>
</tr>
<tr>
<td>CLIM</td>
<td>14.2002</td>
<td>Philippe QUIRION</td>
<td>Macroeconomic Effects of an Energy Saving Policy in the Public Sector</td>
</tr>
<tr>
<td>ETA</td>
<td>16.2002</td>
<td>Francesco RICCI (I)</td>
<td>Environmental Policy Growth when Inputs are Differentiated in Pollution Intensity</td>
</tr>
<tr>
<td>ETA</td>
<td>17.2002</td>
<td>Alberto PETRUCCI</td>
<td>Devaluation (Levels versus Rates) and Balance of Payments in a Cash-in-Advance Economy</td>
</tr>
<tr>
<td>Coalition Theory Network 18.2002</td>
<td>László Á. KÓCZY (liv)</td>
<td>The Core in the Presence of Externalities</td>
<td></td>
</tr>
<tr>
<td>Coalition Theory Network 19.2002</td>
<td>Steven J. BRAMS, Michael A. JONES and D. Marc KILGOUR (liv)</td>
<td>Single-Peakedness and Disconnected Coalitions</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>21.2002</td>
<td>Fausto CAVALLARO and Luigi CIRAOLI</td>
<td>Economic and Environmental Sustainability: A Dynamic Approach in Insular Systems</td>
</tr>
<tr>
<td>CLIM</td>
<td>22.2002</td>
<td>Barbara BUCHNER, Carlo CARRARO, Igor CERSOSIMO and Carmen MARCHIORI</td>
<td>Back to Kyoto? US Participation and the Linkage between R&D and Climate Cooperation</td>
</tr>
<tr>
<td>CLIM</td>
<td>23.2002</td>
<td>Andreas LöSCHEL and ZhongXIAN ZHANG</td>
<td>The Economic and Environmental Implications of the US Repudiation of the Kyoto Protocol and the Subsequent Deals in Bonn and Marrakech</td>
</tr>
<tr>
<td>ETA</td>
<td>24.2002</td>
<td>Marzio GALEOTTI, Louis J. MACCINI and Fabio SCHIANTARELLI</td>
<td>Inventories, Employment and Hours</td>
</tr>
<tr>
<td>ETA</td>
<td>26.2002</td>
<td>Adam B. JAFFE, Richard G. NEWELL and Robert N. STAVINS</td>
<td>Environmental Policy and Technological Change</td>
</tr>
<tr>
<td>SUST</td>
<td>27.2002</td>
<td>Joseph C. COOPER and Giovanni SIGNORELLO</td>
<td>Farmer Premiums for the Voluntary Adoption of Conservation Plans</td>
</tr>
<tr>
<td>SUST</td>
<td>28.2002</td>
<td>The ANSEA Network</td>
<td>Towards An Analytical Strategic Environmental Assessment</td>
</tr>
<tr>
<td>KNOW</td>
<td>29.2002</td>
<td>Paolo SURICO</td>
<td>Geographic Concentration and Increasing Returns: a Survey of Evidence</td>
</tr>
<tr>
<td>ETA</td>
<td>30.2002</td>
<td>Robert N. STAVINS</td>
<td>Lessons from the American Experiment with Market-Based Environmental Policies</td>
</tr>
</tbody>
</table>
Carlo GIUPPONI and Paolo ROSATO: Multi-Criteria Analysis and Decision-Support for Water Management at the Catchment Scale: An Application to Diffuse Pollution Control in the Venice Lagoon

Robert N. STAVINS: National Environmental Policy During the Clinton Years

A. SOUBEYRAN and H. STAHN: Do Investments in Specialized Knowledge Lead to Composite Good Industries?

G. BRUNELLO, M.L. PARISI and Daniela SONEDDA: Labor Taxes, Wage Setting and the Relative Wage Effect

T.J. TIEJENBERG (iv): The Tradable Permits Approach to Protecting the Commons: What Have We Learned?

C. FISCHER (iv): Multinational Taxation and International Emissions Trading

S. M. CAVANAGH, W. M. HANEMANN and R. N. STAVINS: Muffled Price Signals: Household Water Demand under Increasing-Block Prices

A. J. PLANTINGA, R. N. LUBOWSKI and R. N. STAVINS: The Effects of Potential Land Development on Agricultural Land Prices

C. OHL (ivi): Inducing Environmental Co-operation by the Design of Emission Permits

J. EYCKMANS, D. VAN REEGEMORTER and V. VAN STEENBERGHE (ivi): Is Kyoto Fataly Flawed? An Analysis with MacGEM

A. ANTOCI and S. BORGHESI (ivi): Working Too Much in a Polluted World: A North-South Evolutionary Model

P. G. FREDRIKSSON, Johan A. LIST and Daniel MILLIMET (ivi): Chasing the Smokestack: Strategic Policymaking with Multiple Instruments

Z. YU (ivi): A Theory of Strategic Vertical DFI and the Missing Pollution-Haven Effect

Y. H. FARZIN (ivi): Can an Exhaustible Resource Economy Be Sustainable?

Y. H. FARZIN (ivi): Sustainability and Hamiltonian Value

C. PIGA and M. VIVARELLI: Cooperation in R&D and Sample Selection

M. SERTEL and A. SLINKO (ivi): Ranking Committees, Words or Multisets

Sergio CURRARINI (ivi): Stable Organizations with Externatilities

Scott BARRETT (iii): Towards a Better Climate Treaty

Richard G. NEWELL and Robert N. STAVINS: Cost Heterogeneity and the Potential Savings from Market-Based Policies

Vladimir KOTOV and Elena NIKITINA (ivi): Reorganisation of Environmental Policy in Russia: The Decade of Success and Failures in Implementation of Perspective Quests

Vladimir KOTOV (ivi): Policy in Transition: New Framework for Russia’s Climate Policy

Fanny MISSFELDT and Arturo VILLAVICENCO (ivi): How Can Economies in Transition Pursue Emissions Trading or Joint Implementation?

Giovanni DI BARTOLOMEO, Jacob ENGWERDA, Joseph PLASMANS and Bas VAN AARLE: Staying Together or Breaking Apart: Policy-Makers’ Endogenous Coalitions Formation in the European Economic and Monetary Union

Carlo CAPUANO: Demand Growth, Entry and Collusion Sustainability

Federico MUNARI and Raffaele ORIANI: Privatization and R&D Performance: An Empirical Analysis Based on Tobin’s Q

Federico MUNARI and Maurizio SOBRERO: The Effects of Privatization on R&D Investments and Patent Productivity

Giovanni DI BARTOLOMEO, Jacob ENGWERDA, Joseph PLASMANS and Bas VAN AARLE: Staying Together or Breaking Apart: Policy-Makers’ Endogenous Coalitions Formation in the European Economic and Monetary Union

Carlo CAPUANO: Demand Growth, Entry and Collusion Sustainability

Federico MUNARI and Raffaele ORIANI: Privatization and R&D Performance: An Empirical Analysis Based on Tobin’s Q

Federico MUNARI and Maurizio SOBRERO: The Effects of Privatization on R&D Investments and Patent Productivity

Orley ASHENFELTER and Michael GREENSTONE: Using Mandated Speed Limits to Measure the Value of a Statistical Life

Paolo SURICO: US Monetary Policy Rules: the Case for Asymmetric Preferences

Rinaldo BRAU and Massimo FLORIO: Privatisations as Price Reforms: Evaluating Consumers’ Welfare Changes in the U.K.

Barbara K. BUCHNER and Roberto ROSON: Conflicting Perspectives in Trade and Environmental Negotiations

Philippe QUIRION: Complying with the Kyoto Protocol under Uncertainty: Taxes or Tradable Permits?

Anna ALBERINI, Patrizia RIGANTI and Alberto LONGO: Can People Value the Aesthetic and Use Services of Urban Sites? Evidence from a Survey of Belfast Residents

Marco PERCOCO: Discounting Environmental Effects in Project Appraisal
PRIV 107.2002
Mohammed OMRAH: The Performance of State-Owned Enterprises and Newly Privatized Firms: Empirical Evidence from Egypt

PRIV 108.2002
Mike BURKART, Fausto PANUNZI and Andrei SHLEIFER: Family Firms

PRIV 109.2002
Emmanuelle AUROIL, Pierre M. PICARD: Privatizations in Developing Countries and the Government Budget Constraint

PRIV 110.2002
Nichole M. CASTATER: Privatization as a Means to Societal Transformation: An Empirical Study of Privatization in Central and Eastern Europe and the Former Soviet Union

PRIV 111.2002
Christoph LULSFESMANN: Benevolent Government, Managerial Incentives, and the Virtues of Privatization

ETA 87.2002
Kate BISHOP, Igor FILATOTCHEV and Tomasz MICKIEWICZ: Endogenous Ownership Structure: Factors Affecting the Post-Privatization Equity in Largest Hungarian Firms

ETA 88.2002

PRIV 80.2002
Alberto R. PETRUCCI: Government Debt, Agent Heterogeneity and Wealth Displacement in a Small Open Economy

CLIM 92.2002
Timothy SWANSON and Robin MASON: The Impact of International Environmental Agreements: The Case of the Montreal Protocol

PRIV 82.2002

NRM 72.2002
Massimo FLORIO and Katuscia MANZONI: The Abnormal Returns of UK Privatisations: From Underpricing to Outperformance

CLIM 95.2002
Nelson LOURENÇO, Carlos RUSSO MACHADO, Maria do ROSÁRIO JORGE and Luis RODRIGUES: An Integrated Approach to Understand Territory Dynamics, The Coastal Alentejo (Portugal)

PRIV 83.2002
Peter ZAFFEL and Matti VAINIO: Pathways to European Greenhouse Gas Emissions Trading History and Misconceptions

CLIM 96.2002
Pierre COURTOIS: Influence Processes in Climate Change Negotiations: Modelling the Rounds

ETA 87.2002
Vito FRAGNELLI and Maria Erminia MARINA: Environmental Pollution Risk and Insurance

ETA 88.2002
Laurent FRANCKX: Environmental Enforcement with Endogenous Ambient Monitoring

ETA 89.2002
Timo GOESCHL and Timothy M. SWANSON: Lost Horizons. The noncooperative management of an evolutionary biological system.

ETA 90.2002
Hans KEIDING: Environmental Effects of Consumption: An Approach Using DEA and Cost Sharing

ETA 91.2002
Wietze LISE: A Game Model of People’s Participation in Forest Management in Northern India

CLIM 92.2002
Jens HORBACH: Structural Change and Environmental Kuznets Curves

ETA 92.2002
Martin P. GROSSKOPF: Towards a More Appropriate Method for Determining the Optimal Scale of Production Units

ETA 94.2002
Scott BARRETT and Robert STAVINS: Increasing Participation and Compliance in International Climate Change Agreements

CLIM 95.2002
Batu BAYRAMOGLU LISE and Wietze LISE: Climate Change, Environmental NGOs and Public Awareness in the Netherlands: Perceptions and Reality

CLIM 96.2002
Matthieu GLACHANT: The Political Economy of Emission Tax Design in Environmental Policy

KNOW 97.2002
Kenn ARIGA and Giorgio BRUNELLO: Are the More Educated Receiving More Training? Evidence from Thailand

ETA 98.2002
Gianfranco FRANCO and Matteo MANERA: Forecasting Volatility in European Stock Markets with Non-linear GARCH Models

ETA 99.2002
Geoffrey HEAL: Bundling Biodiversity

ETA 100.2002
Geoffrey HEAL, Brian WALKER, Simon LEVIN, Kenneth ARROW, Partha DASGUPTA, Gretchen DAILY, Paul EHRLICH, Karl-Goran MALER, Nils KAUTSKY, Jane LUBCHENCO, Steve SCHNEIDER and David STARRETT: Genetie Diversity and Interdependent Crop Choices in Agriculture

ETA 101.2002
Geoffrey HEAL: Biodiversity and Globalization

VOL 102.2002
Andreas LANGE: Heterogeneous International Agreements – If per capita emission levels matter

ETA 103.2002
Pierre-André JOUVET and Walid OUESLATI: Tax Reform and Public Spending Trade-offs in an Endogenous Growth Model with Environmental Externalities

ETA 104.2002
Anna BOTTASO and Alessandro SEMBENELLI: Does Ownership Affect Firms’ Efficiency? Panel Data Evidence on Italy

PRIV 105.2002
Bernardo BORTOLOTTI and Alessandro SEMBENELLI: Does Ownership Affect Firms’ Efficiency? Panel Data Evidence on Italy

PRIV 106.2002
Hario MAI and Mayumi HORIE: Pre-Negotiation for an International Emission Reduction Game

PRIV 107.2002
Sudeshna GHOSH BANERJEE and Michael C. MUNGER: Move to Markets? An Empirical Analysis of "Selling Company Shares to Reluctant Employees: France Telecom’s Experience"
PRIV 112.2002 Isaac OTHERE: Intra-Industry Effects of Privatization Announcements: Evidence from Developed and Developing Countries
PRIV 113.2002 Yannis KATSOLAKOS and Elissavet LIKOYANNI: Fiscal and Other Macroeconomic Effects of Privatization
PRIV 115.2002 D. Teja FLOTHO: A Note on Consumption Correlations and European Financial Integration
PRIV 2.2003 Ibiolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review
PRIV 3.2003 Wietze LISE, Claudia KEMPFTER and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market
KNOW 5.2003 Reyer GERLAGH: Induced Technological Change under Technological Competition
ETA 6.2003 Efraim CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model
SIEV 7.2003 Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers
NRM 8.2003 Eliasatos PAPYRakis and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?
CLIM 9.2003 A. CAPRAROSS, J.-C. PEREAU and T. TZADAI: North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information
KNOW 10.2003 Giorgio BRUNELLO and Daniele CHECCHI: School Quality and Family Background in Italy
CLIM 11.2003 Efraim CASTELNUOVO and Marzio GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis
KNOW 12.2003 Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art
KNOW 15.2003 Tuzin BAYCAN LEVENT, Ennio MASURES and Peter Nijkamp (lx): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life
KNOW 16.2003 Alexandra BITUSIKOVA (lx): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia
KNOW 17.2003 Billy E. VAUGHN and Katarina MLEKOV (lx): A Stage Model of Developing an Inclusive Community
KNOW 18.2003 Selma van LONDEN and Arie de RUIJTER (lx): Managing Diversity in a Glocalizing World
Coalition Theory Network
PRIV 20.2003 Giacomo CALZOLARI and Alessandro PAVAN (lx): Monopoly with Resale
PRIV 22.2003 Marco LiCalzi and Alessandro PAVAN (lx): Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions
PRIV 23.2003 David ETTINGER (lx): Bidding among Friends and Enemies
PRIV 24.2003 Hannu VARTIAINEN (lx): Auction Design without Commitment
PRIV 26.2003 Christine A. PARLOUR and Uday MAJUMDAR (lx): Rationing in IPOs
PRIV 27.2003 Kjell G. NYBORG and Ilya A. STREBULAEV (lx): Multiple Unit Auctions and Short Squeezes
PRIV 28.2003 Anders LUANDER and Jan-Eric NILSSON (lx): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts
PRIV 30.2003 Emiel MAASLAND and Sander ONDERSTAL (lx): Auctions with Financial Externalities
ETA 31.2003 Michael FINUS and Bianca RUNDHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games
KNOW 32.2003 Michele MORETTO: Competition and Irreversible Investments under Uncertainty
PRIV 33.2003 Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?
KNOW 34.2003 Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Treatment Effect Analysis
ETA 35.2003 Alessandra DEL BOCA, Marzio GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation
2002 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>VOL</td>
<td>Voluntary and International Agreements</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SUST</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Dino Pinelli</td>
</tr>
<tr>
<td>MGMT</td>
<td>Corporate Sustainable Management</td>
<td>Andrea Marsanich</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

2003 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>