Monetary Value Assessment of Clam Fishing Management Practices in the Venice Lagoon: Results from a Stated Choice Exercise
Paulo A.L.D. Nunes, Luca Rossetto and Arianne de Blaeij
NOTA DI LAVORO 67.2003

JULY 2003
SIEV – Sustainability Indicators and Environmental Valuation

Paulo A.L.D. Nunes, Ca' Foscari University Venice, Fondazione Eni Enrico Mattei and Free University Amsterdam
Luca Rossetto, University of Padova
Arianne de Blaeij, Free University Amsterdam

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
Social Science Research Network Electronic Paper Collection:
http://papers.ssrn.com/abstract_id=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Monetary Value Assessment of Clam Fishing Management Practices in the Venice Lagoon: Results from a Stated Choice Exercise

Summary

This article focuses on the economic valuation of alternative clam management practices in the Venice Lagoon. The proposed valuation method is characterized by the design of a survey questionnaire next to the fishermen population. In each questionnaire two fishing alternatives are described. The respondent is asked to choose one of them. This valuation method, referred in the article as conjoint valuation, gives sufficient flexibility to set, alter, and combine different management practices. Furthermore, this approach presents an important advantage to the well-known contingent valuation method since it makes the monetary valuation of each management attribute possible. Estimation results of the random utility model show that fishermen’s willingness to pay for a larger clam fishing area is approximately 568 € per year. In addition, an individual fisherman would be willing to pay 1,005 € for a change from today’s fishing situation practice towards a fishing practice exclusively based on vibrant rake system. If we take into account the interaction between fishing management attributes and fishermen characteristics, we can see that the valuation of each management practice differs substantially across the two populations. We can observe that the population of fishermen that operate in the cooperative regime presents not only a higher monetary valuation for an increase in the dimension of the fishing concession, which is now valued at 811 €, but also a stronger willingness to pay for a change from today’s fishing situation towards a fishing practice exclusively based on vibrant rake system, which is now estimated at 2,456 €. Finally, the adoption of a clam fish management practice in Venice Lagoon that is exclusively based on the use of manual rakes, which is associated to the lowest damage to the Lagoon ecosystem, will represent a welfare loss of 5,904 € per fisherman per year. Combining this value with the total number of fishermen currently operating in the Lagoon of Venice, the welfare loss associated with the adoption of such clam management policy that is exclusively based on the use of manual rakes amounts to 11.8 € million per year. This figure can be regarded as an upper bound to the cost of implementation of a clam fishing system anchored in the use of manual, ecosystem friendly rakes.

Keywords: Exotic marine species, Fishing rakes, Manila clam, Fishing effort, Open access, Welfare damages, Policy guidance, Permit price.

JEL: C25, C29, D62, H41, Q20, Q25, Q30

This research was funded by a grant from the Consortium for Managing the Coordination Centre of the Research Activities concerning the Venice Lagoon System (CORILA) within its Research Programme 2000-2004, in particular the research line 1.1 "Economic valuation of environmental goods".

Address for correspondence:
Paulo A.L.D.Nunes
Fondazione Eni Enrico Mattei
Palazzo Querini Stampalia
Castello 5252
30122 Venice
Italy
Fax: +39-041-2711-461
E-mail: pnunes@unive.it
I. Introduction
This article focuses on the estimation, and discussion, of the economic valuation results of alternative clam fishing management practices in the Lagoon of Venice. The proposed valuation approach is anchored in the use of the stated preference methodology and it is characterized by the design of a contingent choice survey, which was carried out by personal interviewers (see ‘Exploring the use of stated preferences methods to value fish management practices’ for more details on the involved econometric modeling and survey design aspects). The organization of the article is as follows. Section 2 describes the recent fish management practices, as a result of the introduction of exotic clam species in the Venice Lagoon. Section 3 discusses the range of the economic estimates and evaluates these for different policy scenarios. Section 4 concludes.

II. Statement of the natural resource problem
A. Clam fish management practices in the lagoon of Venice
Clam fishing in the Lagoon of Venice comes from several fishing activities. These include fishing in lagoon canals and water areas; valley fishing; farm fishing (aquaculture); and clam fishing (CVN 1999). These activities involved the harvest of two endemic species, *Tapes decussatus*, and *Scrobicularia plana*. Originally, clam fishing relied on manual rakes and triangular iron dredges, also known by the local fishermen population as ‘cassa’. Such a traditional fishing practice goes back to the Serenissima Republic as was characterized by many restrictions. For example, nets had to conform to pre-determined models, their mesh needed to be of a certain dimension, and fishing was absolutely forbidden in some periods of the year (see Ninni 1940, Pellizzato and Giorgiutti 1997). Until recently, clam fishing activity in the lagoon continued to be strongly regulated. The local authority together with fishing cooperatives controlled the fishing activity by fixing prices and amounts of catch, as well as defining and managing specific areas in the lagoon (Bevilacqua 1998). Furthermore, until the end of the Second World War motorboats were limited to the port of Chioggia. Elsewhere in lagoon there were only rowing and sailing boats. Their main fishing systems were limited to trawl nets, fyke-nets, gillnets, seine nets, and other manual equipments (Brunelli *et al.* 1940, Zolezzi 1944).

Today more than 2,000 people are employed in the clam fishery sector. The current clam fishing practice is characterized by an open access situation. In other words, in order to fish in the Lagoon, it is necessary to buy a license. There is no limit of the total licenses issued per fishing season. This fact together with the high revenues associated with clam fishing have
encouraged an increasing fishing effort, resulting in the adoption of technological intensive equipment and the progressive abandon of the traditional fishing practices (Pellizzato and Giorgiutti 1997). In this context, the Lagoon has been assisting the widespread of mechanical and vibrating fishing equipments, including the use of suction dredgers and rakes for harvesting clams (see Figure 1).

*** Introduce Figure 1 about here ***

B. The introduction of the exotic clam species

The clam fishing effort in the Lagoon has strongly increased since 1983, coinciding with the introduction of *Tapes philippinarum*, also called the Manila clam in the Lagoon. This exotic species originally comes from the Indo-Pacific region and it has rapidly adapted to the lagoon environment. Now it is responsible for colonising large shallow areas and competing directly in the ecological niche with the endemic clam species. Furthermore, the relatively high market price of this species, ranging from 1.6 to 3.6 euro a kilogram, has contributed to an increase of the Manila clam fishing profitability. Because of the open access situation, many operators came into this activity. Most of them adopted mechanical equipment, such as the vibrating rake technology, used exclusively for the harvest of this shellfish. All together, this has led to significant in the fish management practices. For example, in 1998, the fishing fleet was composed of about 600 vessels, 84 of which used vibrating rake technology. The vibrating rake is equipped with an electrical cage, shaking and filtering sediment mechanisms with a capacity to harvest 150 to 200 kg of clam shellfish a day (Pellizzato *et al.* 2000). Manila clams live at water bottom and for this reason they are very sensitive to water movements and to deposit and accumulation of water sediments (Orel *et al.* 1997). Since the harvest of this shellfish implies sediment movements, these have become exceptionally significant with the introduction of mechanical and vibrating fishing equipments. Therefore, the adoption of these vibrating technologies has brought unavoidable negative environmental impacts on the morphology, processes and marine life functions of the Lagoon (ICRAM 1994, Pranovi and Giovanardi 1994, Sfriso 2000).

These management practices are currently are far and away from being a sustainable economical activity as they have been causing unprecedented damages to the marine system. For example, market data shows a diminishing supply of approximately 40% between 2000 and 2001 due to a reduction in the clam's stock (see Granzotto *et al.* 2002 for additional details). To make matters worse, such a heavy fishing pressure has been followed by an
increased pollution in the Lagoon due to the neighborhood industrial activities, such as the oil refineries located at Marghera. These have also contributed to significant environmental damage to the marine ecosystem, including the destruction of nursery areas and feeding grounds of many commercial fishes.

In such a context, the economic valuation of alternative clam management practices is of central importance since it sheds light on the involved welfare changes (see van den Bergh et al. 2002, Nunes and van den Bergh 2002). These can be compared with the benefits derived from protecting the Lagoon from environmental damage across alternative policy scenarios. Valuation results are presented and discussed in the following section.

III. Monetary valuation results

The questionnaire was carried out in summer 2001. The sampling was executed across the two main areas of the Lagoon: the northern area, including Burano, and the southern area. The questionnaire was performed by face-to-face interviews, involving the participation of researchers with high levels of field knowledge as the interviewers. The interviewers contacted 193 fishermen, 114 of which completed the questionnaire. The non-participation rate is therefore about 40 percent. Figure 2 shows the descriptive statistics of the surveys responses.

*** Introduce Figure 2 about here ***

The present questionnaire only contains one section, the contingent choice question. The empirical specification of the random utility model is characterized by decomposing the systematic utility component in terms of price of the permit, area of fishing concession, and the type of fishing system. The valuation results are presented in Table 1a. First, we can observe that all explanatory variable estimates reveal to be statistically significant at the 90 percent level indicating that respondents receive an utility change whenever these change. Second, estimation results show that the probability of the choice of a management practice is positively related to the dimension of the fishing concession area, i.e. any policy option that is characterized by increasing the fishing area is ceteris paribus associated with an increase of the utility and therefore supported by the fishermen. Third, the choice of a management practice reveals to be negatively related to its associated costs, reflecting the fact that higher prices result in lower utilities. Finally, the choice of a management practice reveals to be positively related to its degree of technology, measured in a three-level attribute. In other
words, any policy option that is characterized by the exclusive use of a vibrant rake is, ceteris
paribus, associated with a positive impact in fishermen’s welfare and thus connected with a
higher probability of choice.

*** Introduce Table 1a and Table 1b about here ***

In the present application, stated preference results are used to predict the monetary impact of
changing the dimension of the fishing area and type of fishing system on fishing behavior.
Monetary valuation results show that the amount of money that an individual fisherman
would be willing to pay for a change in the dimension of the fishing concession is 568 €. In
addition, Table 3b shows that the economic welfare impact of a change in the clam
management practice, due to a change in the fishing system amounts to 1,005 €. In other
words, an individual fisherman would be willing to pay 1,005 € for a change from today’s
fishing situation towards a fishing practice exclusively based on the vibrant rake system.
We can also observe that only a relatively small part of the variance of the observed stated
preference behavior can be explained by these fishing-related-attributes, the R^2 is about 19
percent. As a consequence the respective monetary valuation results are characterized by
relatively wide interval estimates. For example, according to Table 3b, fishermen’s WTP for a
larger fishing concession ranges between 125 € and 1,732 €. In order to improve MNL
estimation results, we study the degree to which preferences for fishing programs differ
between the two segments of the fishermen population. In this context, two fishing segments
were defined, corresponding to two types of fishing regimes in the Venice Lagoon. One
fishing regime refers to a fishing fleet that is composed of vessels jointly managed by
cooperatives. The other refers to a fishing regime that is characterized by smaller and
individually owned vessels. While the former are currently submitted to a set of cooperative
managing rules, the latter are often managed by private individuals, who predominantly fish
as a complementary income source to their main economic activity. In addition, some of these
individuals are unauthorized or illegal fishermen.
Therefore, we explore an additional model formulation, see Table 2a, which includes
interactions of operations in collective regime and operations in individual regime (individual
characteristics) with the attributes originally under consideration at the stated preferences
model. In fact, the introduction of such information contributed to a significant qualitative
improvement of our econometric model. This is now capable of explaining more than thirty
percent of the variance of the observed stated preferences behavior – see R^2 in Table 2a.
As before, estimation results show that as the price of the permit increases, utility decreases. Similarly, as the concession area increases, utility increases. In addition, regime interactions coefficients are added to the main effects for fishermen who operate in the cooperative regime. Since fishermen who operate in the individual regime are coded as zero, we can see that fishermen who operate in the cooperative regime present a higher sensitivity to the price of the permits, see the estimate for regime*price cross effect in Table 2a. In fact, for the population that operate in the individual regime, a price increase is characterized by a negative impact in the utility and estimated to be of the magnitude – 0.0007. In contrast, the fishermen population who operate in the cooperative regime this impact decreases to – 0.0028 (= – 0.0007 – 0.0011). Independently of the type of fishermen, price estimates are statistically significant indicating that, everything held constant, fishermen continue to receive more utility from lower prices.

*** Introduce Table 2a and Table 2b about here ***

We can also observe that a change in the dimension of the concession area presents stronger impact on the utility of the population of the fishermen who operate in the cooperative regime than on fishermen who operate in the individual regime, 1.167 and 0.5814 respectively. Finally, estimation results show that the welfare impact of a change in the fishing system differs substantially across the two fishermen populations, which is particularly strong for the fishermen who operate in the cooperative regime. Such parameter estimates are reflected in the economic welfare measurements – see Table 2b. In fact, when comparing these valuation results with the ones presented in Table 1b, which represents the polled fisherman population, we can observe that the population of fishermen who operate in the cooperative regime present higher monetary valuation for an increase in the dimension of the fishing concession, which is now valued at 811 €. In addition, this population is characterized by a stronger willingness to pay for a change from today’s fishing situation towards a fishing practice exclusively based on vibrant rake system, which is now estimated at 2,456 €.

Finally we address a policy issue related to the economic value assessment exercise of a change in the clam management practice in Lagoon Venice due to an adoption of a clam system exclusively based the use of manual rakes, which are described as the showing the lowest environmental damage. In other words, how much would it cost to pay all fishermen, independently of their current fishing equipment, to adopt such an environmental friendly clam fishing technology? According to our calculations – see Table 3a and 3b – the financial
costs associated with the adoption of such a policy is estimated to be 5,904 € per fisherman per year, ranging up to a maximum of 80,160 € per fisherman per year, depending on the type of fishermen population and current management practice. Combining this value with the total number of fishermen currently operating in the Lagoon of Venice, the total welfare loss associated with the adoption of the manual clam fishing technology is estimated to at 11.8 € million per year. This information is crucial for the evaluation of the costs due to the adoption of a clam fishing system based on the use of manual rakes. In this context, this figure can be regarded as an lower bound to the benefits of implementation of a clam fishing system based associated with the lowest environmental damage in the Lagoon.

IV. Conclusions

This article focused on the economic valuation of alternative clam management practices in the Lagoon of Venice. The proposed valuation method is characterized by the design of a questionnaire. Estimation results show that: (1) fishermen bear an utility change whenever the price of the annual permit, the fishing technological system and the dimension of the fishing area change; (2) the probability of the choice of a management practice is positively related to the dimension of the fishing concession area and the level of technology. In other words, any policy option that is characterized by the exclusive use of the vibrating and scrapers fishery system is associated with a positive impact in fishermen’s welfare. Furthermore, (3) the choice of a management practice reveals to be negatively related to its associated costs, reflecting the fact that higher prices of the annual permit result in lower utilities.

In addition, economic results show that individual fisherman value: (1) positively the enlargement of the fishing area (ranging from 568 € to 811 €, ha/year); (2) positively the change from today’s fishing situation practice towards a fishing practice exclusively based on the vibrant rake system (ranging from 1,005 € to 2,455 €, year); (3) negatively the change from today’s fishing situation practice towards a fishing practice exclusively based in the use of manual, ecosystem friendly rakes (5,905 € to 80,160 €, year). Furthermore, combining the valuation results with the fishermen population (2,000) means that the adoption of a clam fishing management practice that is exclusively based on the use of the manual rakes will be associated with a welfare loss that ranges from 11.8 € to 160.3 € million per year. Such a range reflects that the welfare impact of a change in clam management practices differs substantially across the population of fishermen that operates in the cooperative regime and the population of fishermen that operates in the individual regime. Finally, from a policy perspective the adoption of a clam fish management practice anchored in the use of manual,
ecosystem friendly rakes, and associated forgone environmental damages on the morphology processes and marine life functions, will require an annual a lump sum payment to the fisherman population that amounts to no less than 11.8 €million per year.

REFERENCE

Table 1a: Stated preferences model estimates (a)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of the permit</td>
<td>–0.0006</td>
<td>0.000*</td>
</tr>
<tr>
<td>Area</td>
<td>0.3340</td>
<td>0.005*</td>
</tr>
<tr>
<td>Fishing system (b)</td>
<td>–0.6017</td>
<td>0.085**</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.1911</td>
<td></td>
</tr>
</tbody>
</table>

Table 1b: Economic welfare measurement

<table>
<thead>
<tr>
<th>WTP for</th>
<th>Point estimate</th>
<th>95% Confidence Interval (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>568 €</td>
<td>[125 € ; 1 732 €]</td>
</tr>
<tr>
<td></td>
<td>(1.70) (c)</td>
<td></td>
</tr>
<tr>
<td>Fishing system (b)</td>
<td>1 005 €</td>
<td>[– 119 € ; 3 236 €]</td>
</tr>
<tr>
<td></td>
<td>(1.36) (c)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

* (***) Statistically significant at 5% (10%).
(a) Calculations are performed using the MULTINOMIAL LOGIT procedure in LIMDEP®.
(b) Ordinal categorical variable with 0 = today (benchmark), 1 = manual, and – 1 = vibrant.
(c) t-values are computed using the delta method.
(d) CI is estimated using the asymptotic t-test method as described by Armstrong et al. (2001).
Table 2a: Stated preferences model estimates with cross effects for the fishing regime (a)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of the permit</td>
<td>-0.0007</td>
<td>0.008 *</td>
</tr>
<tr>
<td>Area</td>
<td>0.5814</td>
<td>0.008 *</td>
</tr>
<tr>
<td>Fishing system (b)</td>
<td>-1.7661</td>
<td>0.013</td>
</tr>
<tr>
<td>Regime (c) * Price</td>
<td>-0.0011</td>
<td>0.316</td>
</tr>
<tr>
<td>Regime (c) * area</td>
<td>0.5856</td>
<td>0.492</td>
</tr>
<tr>
<td>Regime (c) * system</td>
<td>4.2996</td>
<td>0.052 *</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.3023</td>
<td></td>
</tr>
</tbody>
</table>

Table 2b: Economic welfare measurement

<table>
<thead>
<tr>
<th>WTP for</th>
<th>Point estimate</th>
<th>95% Confidence Interval (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>811 €</td>
<td>[225 € ; 2 917 €]</td>
</tr>
<tr>
<td></td>
<td>(1.97) (d)</td>
<td></td>
</tr>
<tr>
<td>Fishing system (b)</td>
<td>2 456 €</td>
<td>[403 € ; 8 340 €]</td>
</tr>
<tr>
<td></td>
<td>(1.84) (d)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
* (**) Statistically significant at 5% (10%).
(a) Calculations are performed using the MULTINOMIAL LOGIT procedure in LIMDEP®.
(b) Ordinal categorical variable (0 = today, 1 = exclusively manual, – 1 = exclusively vibrant).
(c) Regime is a dummy variable with 1 denoting regime cooperative and 0 regime individual.
(d) t-values are computed using the delta method.
(e) CI is estimated using the asymptotic t-test method as described by Armstrong et al. (2001)
Table 3a: Model estimation with cross effects for the fishing regime (a)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of the permit</td>
<td>-0.0003</td>
<td>0.030 *</td>
</tr>
<tr>
<td>Area</td>
<td>0.2787</td>
<td>0.031 *</td>
</tr>
<tr>
<td>Fishing system = Manual</td>
<td>-1.8644</td>
<td>0.013 *</td>
</tr>
<tr>
<td>Regime (b) * Price</td>
<td>-0.0015</td>
<td>0.170</td>
</tr>
<tr>
<td>Regime (b) * area</td>
<td>0.8888</td>
<td>0.292</td>
</tr>
<tr>
<td>Regime (b) * manual</td>
<td>4.4041</td>
<td>0.048 *</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.3023</td>
<td></td>
</tr>
</tbody>
</table>

Table 3b: Economic welfare measurement

<table>
<thead>
<tr>
<th>WTP for Fishing system = Manual</th>
<th>Point estimate</th>
<th>95% Confidence Interval (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-5 904 €</td>
<td>[-80 160 € ; -953 €]</td>
</tr>
</tbody>
</table>

Notes:
* Statistically significant at 5%.
(a) Calculations are performed using the MULTINOMIAL LOGIT procedure in LIMDEP®.
(b) Regime is a dummy variable with 1 denoting regime cooperative and 0 regime individual
(c) t-values are computed using the delta method.
(d) CI is estimated using the asymptotic t-test method as described by Armstrong et al. (2001)
Source: Boatto et al. (2002)

Figure 1 - Diffusion of fishing equipments in the Lagoon of Venice

Source: Boatto et al. (2002)

Figure 2 - Descriptive statistics of contingent choice questionnaire
NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Paper Series
Our working papers are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://papers.ssrn.com

SUST 1.2002 K. TANO, M.D. FAMINOW, M. KAMUANGA and B. SWALLOW: Using Conjoint Analysis to Estimate Farmers’ Preferences for Cattle Traits in West Africa

ETA 2.2002 Efrem CASTELNUOVO and Paolo SURICO: What Does Monetary Policy Reveal about Central Bank’s Preferences?

CLIM 4.2002 Andreas LÖSCHEL: Technological Change in Economic Models of Environmental Policy: A Survey

VOL 5.2002 Carlo CARRARO and Carmen MARCHIORI: Stable Coalitions

KNOW 8.2002 Alain DESDOIGTS: Neoclassical Convergence Versus Technological Catch-up: A Contribution for Reaching a Consensus

NRM 9.2002 Giuseppe DI VITA: Renewable Resources and Waste Recycling

KNOW 10.2002 Giorgio BRUNELLO: Is Training More Frequent when Wage Compression is Higher? Evidence from 11 European Countries

ETA 11.2002 Mordecai KURZ, Hehui JIN and Maurizio MOTOLESE: Endogenous Fluctuations and the Role of Monetary Policy

KNOW 12.2002 Reyer GERLAGH and Marjan W. HOFKES: Escaping Lock-in: The Scope for a Transition towards Sustainable Growth?

NRM 13.2002 Michele MORETTO and Paolo ROSATO: The Use of Common Property Resources: A Dynamic Model

CLIM 14.2002 Philippe QUIRION: Macroeconomic Effects of an Energy Saving Policy in the Public Sector

CLIM 16.2002 Francesco RICCI (I): Environmental Policy Growth when Inputs are Differentiated in Pollution Intensity

ETA 17.2002 Alberto PETRUCCI: Devaluation (Levels versus Rates) and Balance of Payments in a Cash-in-Advance Economy

Coalition Theory Network 18.2002 László Á. KÓCZY (liv): The Core in the Presence of Externalities

NRM 21.2002 Fausto CAVALLARO and Luigi CIRAOLI: Economic and Environmental Sustainability: A Dynamic Approach in Insular Systems

CLIM 22.2002 Barbara BUCHNER, Carlo CARRARO, Igor CERSOSIMO and Carmen MARCHIORI: Back to Kyoto? US Participation and the Linkage between R&D and Climate Cooperation

CLIM 23.2002 Andreas LÖSCHEL and ZhongXIAN ZHANG: The Economic and Environmental Implications of the US Repudiation of the Kyoto Protocol and the Subsequent Deals in Bonn and Marrakech

ETA 24.2002 Marzio GALEOTTI, Louis J. MACCINI and Fabio SCHIANTARELLI: Inventories, Employment and Hours

ETA 26.2002 Adam B. JAFFE, Richard G. NEWELL and Robert N. STAVINS: Environmental Policy and Technological Change

SUST 27.2002 Joseph C. COOPER and Giovanni SIGNORELLO: Farmer Premiums for the Voluntary Adoption of Conservation Plans

SUST 28.2002 The ANSEA Network: Towards An Analytical Strategic Environmental Assessment

KNOW 29.2002 Paolo SURICO: Geographic Concentration and Increasing Returns: a Survey of Evidence

ETA 30.2002 Robert N. STAVINS: Lessons from the American Experiment with Market-Based Environmental Policies
SUST 71.2002 Carlo GIUPPONI and Paolo ROSATO: Multi-Criteria Analysis and Decision-Support for Water Management at the Catchment Scale: An Application to Diffuse Pollution Control in the Venice Lagoon

NRM 32.2002 Robert N. STAVINS: National Environmental Policy During the Clinton Years

KNOW 33.2002 A. SOUBEYRAN and H. STAHN: Do Investments in Specialized Knowledge Lead to Composite Good Industries?

KNOW 34.2002 G. BRUNELLO, M.L. PARISI and Daniela SONEDDA: Labor Taxes, Wage Setting and the Relative Wage Effect

CLIM 36.2002 T.TIETENBERG (iv): The Tradable Permits Approach to Protecting the Commons: What Have We Learned?

NRM 40.2002 S. M. CAVANAGH, W. M. HANEMANN and R. N. STAVINS: Muddled Price Signals: Household Water Demand under Increasing-Block Prices

CLIM 42.2002 C. OHL (ivi): Inducing Environmental Co-operation by the Design of Emission Permits

CLIM 43.2002 J. EYCKMANS, D. VAN REEGEMOTER and V. VAN STEENBERGHE (ivi): Is Kyoto Fatally Flawed? An Analysis with MacGEM

CLIM 44.2002 A. ANTOCI and S. BORGHESI (ivi): Working Too Much in a Polluted World: A North-South Evolutionary Model

ETA 45.2002 P. G. FREDRIKSSON, Johan A. LIST and Daniel MILLIMET (ivi): Chasing the Smokestack: Strategic Policymaking with Multiple Instruments

ETA 46.2002 Z. YU (ivi): A Theory of Strategic Vertical DFI and the Missing Pollution-Haven Effect

SUST 47.2002 Y. H. FARZIN: Can an Exhaustible Resource Economy Be Sustainable?

SUST 48.2002 Y. H. FARZIN: Sustainability and Hamiltonian Value

KNOW 49.2002 C. PIGA and M. VIVARELLI: Cooperation in R&D and Sample Selection

Coalition Theory Network 50.2002 M. SERTEL and A. SLINKO (iv): Ranking Committees, Words or Multisets

Coalition Theory Network 51.2002 Sergio CURRARINI (ivi): Stable Organizations with Externals

ETA 52.2002 Robert N. STAVINS: Experience with Market-Based Policy Instruments

CLIM 54.2002 Scott BARRETT (iii): Towards a Better Climate Treaty

ETA 55.2002 Richard G. NEWELL and Robert N. STAVINS: Cost Heterogeneity and the Potential Savings from Market-Based Policies

SUST 56.2002 Paolo ROSATO and Edi DEFRANCESCO: Individual Travel Cost Method and Flow Fixed Costs

SUST 57.2002 Vladimir KOTOV and Elena NIKITINA (ivi): Reorganisation of Environmental Policy in Russia: The Decade of Success and Failures in Implementation of Perspective Quests

VOL 60.2002 Giovanni DI BARTOLOMEO, Jacob ENGWERDA, Joseph PLASMANS and Bas VAN AARLE: Staying Together or Breaking Apart: Policy-Makers’ Endogenous Coalitions Formation in the European Economic and Monetary Union

PRIV 62.2002 Carlo CAPUANO: Demand Growth, Entry and Collusion Sustainability

PRIV 63.2002 Federico MUNARI and Raffaele ORIANI: Privatization and R&D Performance: An Empirical Analysis Based on Tobin’s Q

PRIV 64.2002 Federico MUNARI and Maurizio SOBRERO: The Effects of Privatization on R&D Investments and Patent Productivity

SUST 65.2002 Orley ASHENFELTER and Michael GREENSTONE: Using Mandated Speed Limits to Measure the Value of a Statistical Life

CLIM 68.2002 Barbara K. BUSCHNER and Roberto ROSON: Conflicting Perspectives in Trade and Environmental Negotiations

CLIM 69.2002 Philippe QUIRION: Complying with the Kyoto Protocol under Uncertainty: Taxes or Tradable Permits?

SUST 70.2002 Anna ALBERINI, Patrizia RIGANTI and Alberto LONGO: Can People Value the Aesthetic and Use Services of Urban Sites? Evidence from a Survey of Belfast Residents

SUST 71.2002 Marco PERCOCO: Discounting Environmental Effects in Project Appraisal
Move to Markets? An Empirical Analysis of

Sudeshna GHOSH BANERJEE and Michael C. MUNGER

Andreas LANGE

Jens HORBACH

Alberto CHONG and Florencio LÓPEZ-DE-SILANES

Privatization and Labor Force Restructuring Around the

Haruo IMAI and Mayumi HORIE

Anna BOTTASSO and Alessandro SEMBENELLI

Does Ownership Affect Firms’ Efficiency? Panel Data

Banu BAYRAMOGLU LISE and Wietze LISE:

Vito FRAGNELLI and Maria Erminia MARINA

Massimo FLORIO and Katiuscia MANZONI

The Abnormal Returns of UK Privatisations: From Underpricing Evidence from the Fixed-Line Telecommunications Sector in Developing Economies

Mohammed OMRAN:

Laurent FRANCKX

Alberto R. PETRUCCI

François DEGEORGE, Dirk JENTER, Alberto MOEL and Peter TUFANO

Nandini GUPTA

Guillaume GIRMENS and Michel GUILLARD

Privatization and Investment: Crowding-Out Effect vs Financial

Mike BURKART, Fausto PANUNZI and Andrei SHLEIFER: Family Firms

Emmanuelle AURIOL, Pierre M. PICARD: Privatizations in Developing Countries and the Government Budget Constraint

Nichole M. CASTATER: Privatization as a Means to Societal Transformation: An Empirical Study of Privatization in Central and Eastern Europe and the Former Soviet Union

Christoph LULSFESMANN: Benevolent Government, Managerial Incentives, and the Virtues of Privatization

Kate BISHOP, Igor FILATOTCHEV and Tomasz MICKIEWICZ: Endogenous Ownership Structure: Factors Affecting the Post-Privatization Equity in Largest Hungarian Firms

Alberto P. PETRUCCI: Government Debt, Agent Heterogeneity and Wealth Displacement in a Small Open Economy

Timothy SWANSON and Robin MASON (iv): The Impact of International Environmental Agreements: The Case of the Montreal Protocol

Massimo FLORIO and Katuscia MANZONI: The Abnormal Returns of UK Privatisations: From Underpricing to Outperformance

Nelson LOURENÇO, Carlos RUSSO MACHADO, Maria do ROSÁRIO JORGE and Luis RODRIGUES: An Integrated Approach to Understand Territory Dynamics, The Coastal Alentejo (Portugal)

Peter ZAPFEL and Matti VAINIO (iv): Pathways to European Greenhouse Gas Emissions Trading History and Misconceptions

Pierre COURTOIS: Influence Processes in Climate Change Negotiations: Modelling the Rounds

Vito FRAGNELLI and Maria Erminia MARINA (iviii): Environmental Pollution Risk and Insurance

Laurent FRANCKX (iviii): Environmental Enforcement with Endogenous Ambient Monitoring

Tino GOESCHL and Timothy SWANSON (iviii): Lost Horizons. The noncooperative management of an evolutionary biological system.

Hans KEIDING (iviii): Environmental Effects of Consumption: An Approach Using DEA and Cost Sharing

Wietze LISE (iviii): A Game Model of People’s Participation in Forest Management in Northern India

Jens HORBACH: Structural Change and Environmental Kuznets Curves

Martin P. GROSSKOPF: Towards a More Appropriate Method for Determining the Optimal Scale of Production Units

Scott BARRETT and Robert STAVINS: Increasing Participation and Compliance in International Climate Change Agreements

Batu BAYRAMOGLU LISE and Wietze LISE: Climate Change, Environmental NGOs and Public Awareness in the Netherlands: Perceptions and Reality

Matthieu GLACHANT: The Political Economy of Emission Tax Design in Environmental Policy

Kenn ARIGA and Giorgio BRUNELLO: Are the More Educated Receiving More Training? Evidence from Thailand

Gianfranco FORTE and Matteo MANERA: Forecasting Volatility in European Stock Markets with Non-linear GARCH Models

Geoffrey HEAL: Bundling Biodiversity

Geoffrey HEAL, Brian WALKER, Simon LEVIN, Kenneth ARROW, Partha DASGUPTA, Gretchen DAILY, Paul EHRlich, Karl-Goran MALER, Nils KAUTSKY, Jane LUBCHENCO, Steve SCHNEIDER and David STARRETT: Genet ic Diversity and Interdependent Crop Choices in Agriculture

Geoffrey HEAL: Biodiversity and Globalization

Andrews RANGE: Heterogeneous International Agreements – If per capita emission levels matter

Pierre-André JOUVET and Walid OUESLATI: Tax Reform and Public Spending Trade-offs in an Endogenous Growth Model with Environmental Externalities

Anna BOTTASSO and Alessandro SEMBENELLI: Does Ownership Affect Firms’ Efficiency? Panel Data Evidence on Italy

Bernardo BORTOLOTTI and Alessandro SEMBENELLI: Does Ownership Affect Firms’ Efficiency? Panel Data Evidence on Italy

Haruo IMAI and Mayumi HORIE (iviii): Pre-Negotiation for an International Emission Reduction Game

Sudeshna GHOSH BANERJEE, Frank DE JONG, Giovanna NICODANO and Ibolya SCHINDELE: Privatization and Stock Market Liquidity

Haruo IMAI and Mayumi HORIE (iviii): Pre-Negotiation for an International Emission Reduction Game

Sudeshna GHOSH BANERJEE and Michael C. MUNGER: Move to Markets? An Empirical Analysis of Privatisation in Developing Countries

Guillaume GIRMENS and Michel GUILLARD: Privatization and Investment: Crowding-Out Effect vs Financial Diversification

Alberto CHONG and Florencio LÓPEZ-DE-SILANES: Privatization and Labor Force Restructuring Around the World

Nandini GUPTA: Partial Privatization and Firm Performance

François DEGEORGE, Dirk JENTER, Alberto MOEL and Peter TUFANO: Selling Company Shares to Reluctant Employees: France Telecom’s Experience
113.2002 Yannis KATSOUKAKOS and Elissavet LIKOYANNI: Fiscal and Other Macroeconomic Effects of Privatization

PRIV 111.2002 D. Teja FLOTTO: A Note on Consumption Correlations and European Financial Integration

PRIV 2.2003 Iboya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review

PRIV 3.2003 Witze LISE, Claudia KEMFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market

KNOW 5.2003 Reyer GERLAGH: Induced Technological Change under Technological Competition

ETA 6.2003 Efrem CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model

SIEV 7.2003 Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers

NRM 8.2003 Eliasios PAPYRakis and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?

CLIM 9.2003 A. CAPPAROSS, J.-C. PEREAU and T. TAZDAIT: North-South Climate Change Negotiations: A Sequential Game with Asymmetric Information

KNOW 10.2003 Giorgio BRUNELLO and Daniele CHECCHI: School Quality and Family Background in Italy

CLIM 11.2003 Efrem CASTELNUOVO and Marzio GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis

KNOW 12.2003 Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art

KNOW 15.2003 Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP (ix): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life

KNOW 16.2003 Alexandra BITUSIKOVA (lx): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia

KNOW 17.2003 Billy E. VAUGHN and Katarina MLEKOv (lx): A Stage Model of Developing an Inclusive Community

KNOW 18.2003 Selma van LONDEN and Arie de RUIJTER (lx): Managing Diversity in a Glocalizing World

PRIV 20.2003 Giacomo CALZOLARI and Alessandro PAVAN (lx): Monopoly with Resale

PRIV 22.2003 Marco LiCalzi and Alessandro PAVAN (lx): Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions

PRIV 23.2003 David ETTINGER (lx): Bidding among Friends and Enemies

PRIV 24.2003 Hannu VARTIAINEN (lx): Auction Design without Commitment

PRIV 26.2003 Christine A. PARLOUR and Uday RAJAN (lx): Rationing in IPOs

PRIV 27.2003 Kjell G. NYBORG and Ilya A. STREBULAEV (lx): Multiple Unit Auctions and Short Squeezes

PRIV 28.2003 Anders LUNANDER and Jan-Eric NILSSON (lx): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts

PRIV 30.2003 Emiel MAASLAND and Sander ONDERSTAL (lx): Auctions with Financial Externalities

ETA 31.2003 Michael FINUS and Bianca RUNDHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games

KNOW 32.2003 Michele MORETTO: Competition and Irreversible Investments under Uncertainty

PRIV 33.2003 Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?

KNOW 34.2003 Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Treatment Effect Analysis

ETA 35.2003 Alessandra DEL BOCA, Marzo GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation
GG 36.2003 Matthieu GLANCHANT: Voluntary Agreements under Endogenous Legislative Threats
PRIV 37.2003 Narjess BOUBAKRI, Jean-Claude COSSET and Omrane GUEDHAMI: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection
CLIM 38.2003 Rolf GOLOMBEK and Michael HOEL: Climate Policy under Technology Spillovers
KNOW 39.2003 Slim BEN YOUSSEF: Transboundary Pollution, R&D Spillovers and International Trade
CTN 40.2003 Carlo CARRARO and Carmen MARCHIORI: Endogenous Strategic Issue Linkage in International Negotiations
KNOW 42.2003 Timo GOESCHL and Timothy SWANSON: On Biology and Technology: The Economics of Managing Biotechnologies
CLIM 44.2003 Katrin MILLOCK and Céline NAUGES: The French Tax on Air Pollution: Some Preliminary Results on its Effectiveness
PRIV 45.2003 Bernardo BORTOLETTI and Paolo PINOTTI: The Political Economy of Privatization
SIEV 46.2003 Elbert DJUKGRAAF and Herman R.J. VOLLEBERGH: Burn or Bury? A Social Cost Comparison of Final Waste Disposal Methods
ETA 47.2003 Jens HORBACH: Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany
CLIM 48.2003 Lori SNYDER, Nolan MILLER and Robert STAVINS: The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing
CTN 50.2003 László A. KOCZY and Luc LAUWERS (lx): The Minimal Dominant Set is a Non-Empty Core-Extension
CTN 51.2003 Matthew O. JACKSON (lx): Allocation Rules for Network Games
CTN 52.2003 Ana MAULEON and Vincent VANNETELBOSCH (lx): Farsightedness and Cautiousness in Coalition Formation
CTN 54.2003 Matthew HAAG and Roger LAGUNOFF (lx): On the Size and Structure of Group Cooperation
CTN 55.2003 Taiji FURUSAWA and Hideo KONISHI (lx): Free Trade Networks
CTN 56.2003 Halis Murat YILDIZ (lx): National Versus International Mergers and Trade Liberalization
CTN 57.2003 Santiago RUBIO and Alistair ULPH (lx): An Infinite-Horizon Model of Dynamic Membership of International Environmental Agreements
KNOW 58.2003 Carole MAIGNAN, Dino PINELLI and Gianmarco I.P. OTTAVIANO: ICT, Clusters and Regional Cohesion: A Summary of Theoretical and Empirical Research
KNOW 59.2003 Giorgio BELLETTINI and Gianmarco I.P. OTTAVIANO: Special Interests and Technological Change
ETA 60.2003 Ronnie SCHÖB: The Double Dividend Hypothesis of Environmental Taxes: A Survey
CLIM 61.2003 Michael FINUS, Ekko van IERLAND and Robert DELLINK: Stability of Climate Coalitions in a Cartel Formation Game
SIEV 63.2003 Alberto PETRucci: Taxing Land Rent in an Open Economy
CLIM 64.2003 Joseph E. ALDY, Scott BARRETT and Robert N. STAVINS: Thirteen Plus One: A Comparison of Global Climate Policy Architectures
SIEV 65.2003 Edi DEFRANCESCO: The Beginning of Organic Fish Farming in Italy
SIEV 66.2003 Klaus CONRAD: Price Competition and Product Differentiation when Consumers Care for the Environment
(i) This paper was presented at the Workshop “Growth, Environmental Policies and Sustainability” organised by the Fondazione Eni Enrico Mattei, Venice, June 1, 2001
(ii) This paper was presented at the Fourth Toulouse Conference on Environment and Resource Economics on “Property Rights, Institutions and Management of Environmental and Natural Resources”, organised by Fondazione Eni Enrico Mattei, IDEI and INRA and sponsored by MATE, Toulouse, May 3-4, 2001
(iii) This paper was presented at the International Conference on “Economic Valuation of Environmental Goods”, organised by Fondazione Eni Enrico Mattei in cooperation with CORILA, Venice, May 11, 2001
(iv) This paper was presented at the Seventh Meeting of the Coalition Theory Network organised by the Fondazione Eni Enrico Mattei and the CORE, Université Catholique de Louvain, Venice, Italy, January 11-12, 2002
(v) This paper was presented at the First Workshop of the Concerted Action on Tradable Emission Permits (CATEP) organised by the Fondazione Eni Enrico Mattei, Venice, Italy, December 3-4, 2001
(vi) This paper was presented at the ESF EURESCO Conference on Environmental Policy in a Global Economy “The International Dimension of Environmental Policy”, organised with the collaboration of the Fondazione Eni Enrico Mattei, Acquafrredda di Maratea, October 6-11, 2001
(vii) This paper was presented at the First Workshop of “CFEWE – Carbon Flows between Eastern and Western Europe”, organised by the Fondazione Eni Enrico Mattei and Zentrum fur Europäische Integrationsforschung (ZEI), Milan, July 5-6, 2001
(viii) This paper was presented at the Workshop on “Game Practice and the Environment”, jointly organised by Università del Piemonte Orientale and Fondazione Eni Enrico Mattei, Alessandria, April 12-13, 2002
(ix) This paper was presented at the ENIGIME Workshop on “Mapping Diversity”, Leuven, May 16-17, 2002
(x) This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications”, organised by the Fondazione Eni Enrico Mattei, Milan, September 26-28, 2002
(xi) This paper was presented at the Eighth Meeting of the Coalition Theory Network organised by the GREQM, Aix-en-Provence, France, January 24-25, 2003
2002 SERIES

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
<th>EDITOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>VOL</td>
<td>Voluntary and International Agreements</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SUST</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Dino Pinelli</td>
</tr>
<tr>
<td>MGMT</td>
<td>Corporate Sustainable Management</td>
<td>Andrea Marsanich</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

2003 SERIES

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
<th>EDITOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRMIEM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>