Ancillary Benefits of Climate Policy

Anil Markandya and Dirk T.G. Rübbelke

NOTA DI LAVORO 105.2003

DECEMBER 2003

CLIM – Climate Change Modelling and Policy

Anil Markandya, FEEM, ECSSD, The World Bank Group, Washington D.C., USA
Dirk T.G. Rübbelke, Department of Economics, Chemnitz University of Technology
Chemnitz, Germany

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/web/activ/_wp.html
Social Science Research Network Electronic Paper Collection:
http://papers.ssrn.com/abstract_id=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Ancillary Benefits of Climate Policy

Summary

The benefits of climate policy normally consist exclusively of the reduced impacts of climate change, i.e., the policy’s primary aim. Our analysis of benefits of climate policy suggests, however, that researchers and policymakers should also take account of ancillary benefits, e.g., in the shape of improved air quality induced by climate protection measures. A consideration of both, primary and ancillary benefits, has a positive influence on global climate protection efforts, e.g., because the regional impact of ancillary effects attenuates easy-riding motives of countries with respect to their provision of climate protection. In this article, we analyze the nature of ancillary benefits, present an overview of European assessment studies and explain possible methods to estimate ancillary benefits. Main differences between primary and ancillary benefits are pointed out. Furthermore, we stress the major influences of ancillary benefits on climate policy. Finally, we present one of the first models integrating primary and ancillary benefits. By this model quantitative results are calculated with respect to ancillary benefits in the UK considering different green-house gas (GHG) control levels. It is observed that the ancillary benefits could cover about 4 percent of the full GHG reduction cost.

Keywords: Climate Policy, Ancillary Benefits, Pollution Control

JEL: H41, Q28

Address for correspondence:

Anil Markandya
Lead Economist, ECSSD
The World Bank, Mail Stop H5-503
1818 H Street NW
Washington DC 20433
USA
Phone: 202 473 9266
Fax: 202 614 0696
E-mail: amarkandya@worldbank.org
1 Ancillary Benefits

Climate policies initiate the reduction of atmospheric and biospheric GHG concentrations, and hence, the slowing of global warming, which provides primary benefits. But what has been widely omitted so far in the economic literature on climate change is that climate policies also induce ancillary benefits, i.e., benefits which result from climate policies but not from the slowing of climate change. Since primary benefits are intensely discussed in the scientific literature, we mainly focus on the discussion of ancillary benefits. These ancillary benefits are not only considerable in size, they also exhibit characteristics which are different to those of primary benefits. Hence, the consideration of ancillary benefits has not only quantitative impacts with respect to the results of cost-benefit analyses, it additionally induces qualitative effects. Different climate policies have different impacts and may initiate different concrete actions reducing GHG concentrations. Consequently, they imply different ancillary benefits. This is illustrated by considering the control of the most important greenhouse gas CO_2 by way of example. Climate policies which intend to reduce CO_2 concentrations mainly initiate the reduction of CO_2 emissions (sequestration of carbon would be another option):

Implications of the Reductions of Carbon Dioxide Emissions:

Fuel combustion reductions - e.g. caused by the implementation of more efficient technologies or the reduction of road traffic - and the substitution of carbon-intensive fuels reduce CO_2 emissions. Ancillary benefits induced by activities reducing CO_2 emissions accrue from the abatement of non-CO_2 emissions, for example. In fuel combustion processes CO_2 emissions are accompanied by emissions of e.g. CO, NO_x, SO_2, N_2O, CH_4 and particulate matter (PM). Therefore, measures reducing CO_2 not only cause a decrease in CO_2 emissions but also an emission reduction of other pollutants. In general, positive health effects of air pollution reduction that accompany GHG control are considered to represent the most important category of ancillary benefits (see e.g. Ayres and Walter (1991: 258) as well as Heintz and Tol (1996: 7)). According to Olsthoorn et al. (1999: 345) mortality is the crucial effect in the economic valuation of health effects. Other negative impacts of air pollution like accelerated surface corrosion, weathering of materials and impaired visibility are also mitigated by fuel combustion reductions. Improved air quality also causes

\[\text{Implications of the Reductions of Carbon Dioxide Emissions:}\]

\[\text{Fuel combustion reductions} - \text{e.g. caused by the implementation of more efficient technologies or the reduction of road traffic - and the substitution of carbon-intensive fuels reduce } CO_2\text{ emissions. Ancillary benefits induced by activities reducing } CO_2\text{ emissions accrue from the abatement of non-} CO_2\text{ emissions, for example. In fuel combustion processes } CO_2\text{ emissions are accompanied by emissions of e.g. } CO, NO_x, SO_2, N_2O, CH_4\text{ and particulate matter (PM). Therefore, measures reducing } CO_2\text{ not only cause a decrease in } CO_2\text{ emissions but also an emission reduction of other pollutants. In general, positive health effects of air pollution reduction that accompany GHG control are considered to represent the most important category of ancillary benefits (see e.g. Ayres and Walter (1991: 258) as well as Heintz and Tol (1996: 7)). According to Olsthoorn et al. (1999: 345) mortality is the crucial effect in the economic valuation of health effects. Other negative impacts of air pollution like accelerated surface corrosion, weathering of materials and impaired visibility are also mitigated by fuel combustion reductions. Improved air quality also causes}\]

\[\text{1The term ancillary benefits is one of a number used to convey this idea. The others are secondary benefits, or co-benefits or spillover benefits (see IPCC 2001). The main difference is the relative emphasis given to the climate change mitigation benefits versus the other benefits. For some policies these ‘other benefits’ may be as important as the GHG reduction benefits, in which case the term ‘co-benefits’ is more appropriate. Indeed, the 3rd Assessment Report of IPCC prefers the term co-benefits on the grounds that it makes ‘the case for an integrated approach, linking climate change mitigation to the achievement of sustainable development and other policy objectives’ (IPCC 2001: 461). In this paper we stay with the term ancillary benefits simply on the grounds that it is more commonly used and understood. The types of impacts being covered, however, are the same as those discussed under each of their labels.}\]
ANCILLARY BENEFITS

a reduction of the vegetation harming acidic deposition of photochemical oxidants. Furthermore, road traffic reduction as a means to reduce fuel combustion generates not only ancillary benefits by reducing the emission of air pollutants: less road traffic is also accompanied by lower noise levels and frequency of accidents, less traffic congestion and road surface damage. Only a minority of studies considers these non-pollution-specific ancillary benefits in the transport sector (as can be easily observed from the overview of European studies on ancillary benefits in Table 1). But though these benefits are regularly assessed to be small in comparison to the ancillary benefits arising from less air pollution, they are not negligible as e.g. Barker, Johnstone and O’Shea (1993) illustrate.

Measures reducing CO\textsubscript{2} emissions could also cause ancillary costs (Burtraw and Toman 2000a: 3). A switch from fossil fuels like oil, gas or coal in the generation of electricity to the application of nuclear technologies reduces CO\textsubscript{2} emissions but also causes negative externalities. External costs from nuclear electricity generation accrue e.g. from the higher risk of catastrophic accidents in power plants (Ewers and Rennings 1996: 418-419).

Ancillary benefits might also stem from the act of protecting the global climate itself (Rübbeke 2002: 13-14). Industrialized countries may enjoy a kind of ‘warm glow’ from supporting developing countries by mitigating global warming: “A strong argument for trying seriously to slow climate change is that the developing countries are vulnerable and we care” (Schelling 1992: 7). Climate protection can, therefore, be considered like a charitable giving to developing countries. Some industrialized countries may also ‘feel’ guilty since the industrialized world represents the group of main GHG emitter countries, and is, thus, mainly responsible for the anthropogenic greenhouse effect. Consequently, a contribution to the mitigation of the greenhouse effect may relieve their conscience. This ‘relief’ may also be considered as a secondary effect of GHG control from which industrialized countries enjoy ancillary benefits.

Some authors consider ancillary benefits of climate policies that are associated with employment effects or technological change: By levying carbon taxes, funds are collected which could be used to remove distortionary labor taxes, i.e. taxes which raise labor cost and induce a sub-optimal low employment of labor force. With it, the price of the factor labor declines and employment is raised. In recent years a large strand of literature discussed double dividends of environmental tax schemes which recycle revenues by reducing labor cost. Not all contributions supported the

2 “Any action combating global warming will be, intended or not, a foreign aid program” (Schelling 1997: 8).
3 “The OECD is often held responsible for the larger part of the enhancement of the greenhouse effect while non-OECD countries appear to be the main victims of climate change” (Tol et al. 1995: 59).
4 The dividends of such revenue recycling are on the one hand the carbon-tax induced improvement of environmental quality and on the other hand the increase of employment by reducing labor costs. For the double dividend debate see e.g. Bovenberg and de Mooij (1994); Goulder (1995);
double dividend hypothesis. With respect to technological change, Pearce (2000: 11) stresses that technological improvements induced by climate policies might diffuse outside of the sectors targeted for GHG control. Benefits associated with these spillover effects may also be regarded as ancillary benefits of climate policy.

2 European Studies

European studies of ancillary benefits show that secondary benefits are substantial. One of the earliest attempts to integrate secondary benefits into a cost-benefit analysis of GHG control was undertaken by Ayres and Walter (1991). They criticized the influential studies of Nordhaus, since these did not consider secondary benefits and thus, provided too low estimates of GHG control benefits. This view has been supported by Pearce (1992: 7), who points out that Nordhaus (1991a,b) has omitted a major category of benefits by neglecting the secondary benefit category.5

European models assessing ancillary benefits are heterogeneous from a methodological as well as from a geographical point of view. A couple of studies deal with Scandinavian countries. Glomsrød, Vennemo and Johnsen (1992) estimate secondary benefits in a computable general equilibrium model for Norway. They investigate a carbon-tax-induced CO₂ stabilization and consider the secondary benefits associated with an air pollution decrease as well as a transport activity reduction. Alfsen, Brendemoen and Glomsrød (1992) employ a macroeconomic model to assess ancillary benefits related to changes in air pollution and road traffic in Norway. Håkonsen and Mathiesen (1997) refer to the externality cost estimates provided by Alfsen, Brendemoen and Glomsrød (1992) in their general equilibrium analysis of ancillary benefits of CO₂ stabilization in Norway. A different approach is chosen by Alfsen, Birkelund and Aaserud (1995), who assess the reductions in the abatement costs required to meet the Sofia Protocol and the Helsinki Protocol brought about by an EC Carbon/Energy Tax for nine western European countries. Yet, they neglect traffic related benefits of CO₂ control. In contrast, Barker, Johnstone and O’Shea (1993) focus on measuring the importance of traffic related benefits of a carbon/energy tax in the UK and omit the benefits of reduced air pollution.

Meyer et al. (1998; 1999) and Lutz (1998) simulate the effects of CO₂ tax and permit schemes on emissions of non-CO₂ pollutants and CO₂ for Germany, but do not translate the secondary effects into monetary values. Their simulations, based on an econometric model, suggest that there are important air quality improvements associated with CO₂ control policies in Germany. Complainville and Martins (1994) consider emissions of CO₂, SOₓ and NOₓ in a dynamic general equilibrium model (OECD GREEN). Their results suggest that air quality improvements may be as significant in developing countries as they are in industrialized countries. Morgen-

5 Nordhaus (1991b: 928) himself has pointed to the problem that his “calculations omit other potential market failures, such as ozone depletion or air pollution”.
Table 1: European Studies on Ancillary Benefits (Rübbelke 2002: 19).

<table>
<thead>
<tr>
<th>Source</th>
<th>Region</th>
<th>Consideration of Ancillary Effects Associated with</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayres and Walter (1991)</td>
<td>Western Germany, USA</td>
<td>air pollution</td>
<td></td>
</tr>
<tr>
<td>Alfsen, Brendemoen and Glomsrød (1992)</td>
<td>Norway</td>
<td>air pollution and road traffic</td>
<td></td>
</tr>
<tr>
<td>Glomsrød, Vennemo and Johnsen (1992)</td>
<td>Norway</td>
<td>air pollution and road traffic</td>
<td></td>
</tr>
<tr>
<td>Pearce (1992)</td>
<td>UK, Norway</td>
<td>air pollution</td>
<td></td>
</tr>
<tr>
<td>Barker (1993)</td>
<td>UK, USA, Norway</td>
<td>air pollution</td>
<td></td>
</tr>
<tr>
<td>Barker, Johnstone and O’Shea (1993)</td>
<td>UK</td>
<td>road traffic, but no air pollution</td>
<td></td>
</tr>
<tr>
<td>Brendemoen and Vennemo (1994)</td>
<td>Norway</td>
<td>air pollution and road traffic</td>
<td></td>
</tr>
<tr>
<td>Complainville and Martins (1994)</td>
<td>world-wide</td>
<td>air pollution</td>
<td></td>
</tr>
<tr>
<td>Alfsen, Birkeland and Aaserud (1995)</td>
<td>nine western European countries</td>
<td>air pollution</td>
<td></td>
</tr>
<tr>
<td>Ekins (1996a)</td>
<td>UK, Germany</td>
<td>air pollution</td>
<td></td>
</tr>
<tr>
<td>Aaheim, Aunan and Seip (1997)</td>
<td>Hungary</td>
<td>air pollution</td>
<td></td>
</tr>
<tr>
<td>Håkonsen and Mathiesen (1997)</td>
<td>Norway</td>
<td>air pollution and road traffic</td>
<td></td>
</tr>
<tr>
<td>Lutz (1998)</td>
<td>Western Germany</td>
<td>air pollution</td>
<td></td>
</tr>
<tr>
<td>Meyer et al. (1998)</td>
<td>Western Germany</td>
<td>air pollution</td>
<td></td>
</tr>
<tr>
<td>Capros et al. (1999)</td>
<td>European Union</td>
<td>air pollution</td>
<td></td>
</tr>
<tr>
<td>Meyer et al. (1999)</td>
<td>Germany</td>
<td>air pollution</td>
<td></td>
</tr>
<tr>
<td>Aunan, Aaheim and Seip (2000)</td>
<td>Hungary</td>
<td>air pollution</td>
<td></td>
</tr>
<tr>
<td>Barker and Rosendahl (2000)</td>
<td>19 regions of Western Europe</td>
<td>air pollution</td>
<td></td>
</tr>
<tr>
<td>RIVM et al. (2000)</td>
<td>European Union</td>
<td>air pollution</td>
<td></td>
</tr>
<tr>
<td>Sommer et al. (2000)</td>
<td>Austria, France and Switzerland</td>
<td>air pollution</td>
<td></td>
</tr>
</tbody>
</table>
stern (2000: 7) stresses that the limited literature on ancillary benefits in developing countries suggests that the ancillary benefits there are even higher than in the US. Studies investigating regions outside industrialized countries are provided e.g. by Wang and Smith (1999a,b); Aunan et al. (2000) as well as Garbaccio, Ho and Jorgenson (2000) who analyze ancillary benefits in China, and Dessus and O’Connor (1999) as well as Cifuentes et al. (2000) who regard co-benefits of GHG control in Chile. Aaheim, Aunan and Seip (1997) as well as Aunan, Aaheim and Seip (2000) investigate ancillary benefits of energy saving in Hungary.

Ayres and Walter (1991) were among the first researchers who compared European ancillary benefit estimates with estimates for the US. They found out that ancillary benefits in Germany are likely to exceed those in the US, which might be due to the fact that the population density in Germany is higher than in the US. That population density matters for the importance of ancillary benefits is supported by Burtraw and Toman (1997: 22; 2000a: 10, 15; 2000b: 23) as well as Burtraw et al. (1999: 15). They compare European and US estimates of ancillary benefits, too. With respect to the European assessments their main focus is on a survey of studies provided by Ekins (1996a). Burtraw and Toman (1997: 21-22; 2000a: 15; 2000b: 23) as well as Burtraw et al. (1999: 15) point out that the discrepancies between the high European assessments and the US data may also be due to geographic differences. A greater proportion of sulfur emissions in the Eastern US is deposited off-shore rather than on-shore as in Europe. Apart from the demographic and geographic arguments, the discrepancies between the US and European studies considered by Burtraw and Toman (1997; 2000a,b) as well as Burtraw et al. (1999) are attributable to several other factors, e.g. the more aggregate level of modelling in the European studies (Burtraw et al. 1999: 15; Burtraw and Toman 2000b: 23), high economic valuations of environmental impacts employed by the European researchers (Morgenstern 2000: 7-8), and the application of a fixed coefficient procedure in the considered European studies (which does not allow for the possibilities of substitution in production, and therefore results in higher damage costs) (e.g. Pearce 1992 and Barker 1993).

3 Primary vs Ancillary Benefits

Primary and ancillary benefits can in general be distinguished with respect to the degree of publicness, the delay of occurrence and the scientific knowledge required for the assessment:

- **Publicness**: Primary benefits are global, while ancillary benefits are local or regional (IPCC 1996: 217; Pearce 1992: 5). Therefore, ancillary effects of climate policies have mainly the character of a private good to the policy.

6 More recent estimates of ancillary benefits for western European regions provided by Barker and Rosendahl (2000) also exceed the estimates found in studies for the US, although the Barker/Rosendahl results are below the results found in earlier European studies.
providing region or country. This contrasts sharply with the primary effect because the mitigation of global warming is a global public good, i.e., everyone can enjoy this good without affecting other agents’ consumption of it and nobody can be excluded from the consumption. Thus, a country’s provision of climate policy can be considered as an impure public good since it contains pure public as well as private characteristics.\(^7\)

- **Delay:** The intervals between the implementation of a GHG abatement policy and the occurrence of benefits differ among primary and secondary benefits. Secondary benefits can be enjoyed widely in the present, since the avoided damages, e.g., from air pollution or noise, would have otherwise occurred immediately or shortly after the GHG emitting activity.\(^8\) Primary benefits of GHG abatement on the other hand arise with a delay of about a half century. If economists discount benefits with a positive rate,\(^9\) today’s ancillary benefits get a higher weight compared to the primary benefits in distant future. The time lag between GHG abatement measures and the occurrence of primary benefits raises questions on the ‘correct’ discount rate and, consequently ambiguity with respect to the assessment of these future benefits.

- **Required Scientific Knowledge:** A prerequisite to assess primary benefits is an immense knowledge of processes in local spheres and the whole global system. Because knowledge especially of processes in a global context is incomplete, uncertainties accompany the assessment of primary benefits which exceed the ones associated with the assessment of ancillary benefits.\(^10\)

The claim that ancillary benefits arise only from avoided damages affecting the emitting region may hold as long as CO\(_2\) control is regarded. It would not hold anymore if abatement of greenhouse gases such as CFCs is considered (Rübbelke 2002: 23). The abatement of CFCs generates an important positive ancillary effect by protecting the ozone layer. The benefits enjoyed from this effect obviously represent global ancillary benefits.

4 Ancillary Benefit Modelling

Much of the discussion on ancillary benefits has focused on what would be gained from the associated reductions of other pollutants when greenhouse gas reductions

\(^7\) For a discussion of climate policy as an impure public good, see Rübbelke (2003).

\(^8\) “Unlike the benefits of reducing CO\(_2\) emissions now in order to reduce damage from global warming in the future, reducing other emissions, which are causing damage now, yields benefits immediately” (Ekins 1996b: 15).

\(^9\) Economists regularly discount future costs and benefits, e.g., because it is assumed that the present welfare level of people is more important from a politician’s point of view than the welfare level of people living in future.

\(^10\) For the uncertainties surrounding the estimates of ancillary benefits and costs see Krupnick, Burtraw and Markandya (1999: 33-34).
are targeted. What is missing, however, is an analysis of the overall scope for such reductions, taking account of the fact that government has already undertaken measures to reduce non GHG emissions, and taking account of the fact that an optimal policy needs to balance the losses of output against the combined benefits of GHG and non GHG reductions in emissions.

In the appendix we present a simple but effective model to look at the scope for, and the amount of, ancillary benefits in this context. The model assumes that before climate change became an issue, governments concerned themselves only with the control of the 'ancillary' pollutants. They set their policies so as to limit emissions of these pollutants to the point where the marginal costs of reductions in the pollutants were equal to the benefits in the form of reductions in emissions. Once climate change became an issue, however, they had a new problem to solve - that of achieving a reduction in the emissions of greenhouse gases as well as paying attention to the ancillary pollutants. The model formalizes these choices and the solutions and compares them numerically. Data are taken from the UK to demonstrate the methodology and to show the impacts of reductions in GHG emissions in the range of 5-30 percent from the status quo.11

A key issue in ancillary benefit modelling is to determine the level of ancillary benefits in the absence of GHG impacts. We have to assume that the level of ancillary related activities are determined in something approaching an optimal way and then see how they change when GHG considerations are brought in. In the model presented we work with ancillary benefits arising from fossil fuel emissions only.

The main results of our model is that we can report the implied estimates of ancillary benefits for

(a) ancillary emissions that are 33 to 50 percent below maximum emissions in the absence of any climate change policy (i.e. for domestic pollution control reasons),

(b) ‘optimal’ reductions in GHG emissions that range from 5 percent to 30 percent below 1999 levels.

The results are presented in Table 2, which shows:

a. Additional ancillary emissions reductions resulting from introducing a GHG policy with a CO_2 price of $10/MT$ are in the range of 3 to 6 percent, which is not so wide, given that the optimal reductions they cover range from 5 percent to 30 percent of baseline GHG emissions and the assumed optimal reductions in non GHG range for 33 to 50 percent of the maximum non GHG emissions.

b. The ancillary benefits range from 0.7 to 1.7 billion, which are about 4 percent of the full costs of the GHG reduction.

11 It should be noted that the actual values are only indicative; a full deployment of this model would need a more careful and detailed analysis of the data.
Table 2: Ancillary Benefits and Cost of GHG Policy

c. GHG reduction costs are in the range of 1.1 to 2.8 percent of GDP, depending on what is considered the optimal level of reduction.
5 Ancillary Benefits and Climate Policy

There are several differences between primary and ancillary benefits of climate policy, which have qualitative as well as quantitative impacts. The immediate occurrence of ancillary benefits makes discounting unnecessary and gives these benefits a higher weight compared to primary benefits which are expected in distant future. The requirement of scientific knowledge to assess primary benefits exceeds the one of the estimate of ancillary benefits. Therefore, less ambiguity is associated with the assessment of ancillary benefits. Furthermore, ancillary benefits could have a considerable impact on the GHG abatement levels as well as a privatizing impact on the ‘global public good’ nature of climate policy. The privatizing effect is induced by the private character of ancillary benefits: ancillary benefits are national/regional, while primary benefits are global. Consequently, climate policy should be treated as an impure public good from an individual country’s point of view. The privatizing impact of ancillary benefits helps to narrow the gap between an individual country’s optimal and the Pareto-efficient abatement level. Furthermore, as a result of the privatizing effect, easy-riding motives are attenuated (Cornes and Sandler 1994). The impure publicness is also of importance when international transfers as a means to increase the level of GHG abatement are considered. The neutrality of transfers does not hold if the public goods involved are of an ‘impure’ variety (see, e.g., Andreoni (1986; 1989; 1990)).

According to quantitative aspects, our simple model shows that additional ancillary emissions reductions resulting from introducing a GHG policy with a CO₂ price of $10/MT are in the range of 3 to 6 percent. Furthermore, ancillary benefits would cover about 4 percent of the full GHG reduction cost.

The simple model developed here can be extended in the following directions:

a. The fossil fuels can be separated so that each is treated individually.

b. More sophisticated production functions can be used (e.g., CES).

c. A range of values for the price of GHG emissions can be tried.

In spite of its great simplicity, however, the present version offers some real insights into the magnitude and relative importance of ancillary benefits at a macro level. Furthermore, the model itself tends to estimate low ancillary benefits as a percentage of the GHG reduction costs because it derives itself from a model of costs that is ‘macro’ or ‘top down’ based. It is well known that such costs are generally higher than those from a more ‘bottom up’ or mixed basis.

Therefore and in order to prevent the impression that ancillary benefits are negligible, we finally point out that the European ancillary benefit literature widely estimates higher ancillary benefits as a percentage/multiple of primary benefits than our paper does. As Pearce (2000) illustrates, European ancillary benefit studies estimate ancillary benefits as a multiple of primary benefits of between 0.98 and 6.93. However, newer estimates tend to be lower than the ones in the early 1990ies. And
yet, there are US studies on ancillary benefits which are very close to our results. Estimates (as a multiple of primary benefits) are between 0.07 and 6.67 in Pearce’s overview. Considering such comparisons of studies is of course a questionable issue since almost all studies reveal to different kinds of ancillary benefits, different geographical regions and use different models of costs. We think it should be to the reader which modelling he believes to be adequate. And we share the view that ancillary benefits are an important category of benefits but it is likely to be much more important to developing and transformation countries than for the UK.
A Appendix

Define the following variables

\[Y_0 = \text{Level of economic activity (e.g. as measured by GDP in $BN.)}, \]

\[Y_1 = \text{Reduction of level of ancillary emissions from a no control level (000 MT)}, \]

\[Y_2 = \text{Reduction of level of GHG emissions from a no control level (000 MT)}, \]

\[P_0 = \text{Price of output (=1 since only relative prices are of interest here, in $BN.)}, \]

\[P_1 = \text{“Price” of ancillary emissions, based on marginal damages ($BN/000 MT)}, \]

\[P_2 = \text{Price of GHG emissions ($BN/000 MT, based on targets set by international agreements)}. \]

From the producer’s perspective what matters is the reduction in emissions he is required to make, always measured of course from the maximum desired emissions. From a consumer’s perspective, however, what matters is the difference between maximum emissions and the reductions. The present formulation allows both these perspectives to be represented.

In a world before climate change was an issue \(P_2 = 0 \) and the country obtained the solution values

\[Y_{0*}, Y_{1*}, Y_{2*} \]

as determined by

\[
\max \quad Y_0 + P_1 Y_1 \\
\text{s.t.} \quad Y_0 = F(Y_1, Y_2).
\]

In other words, emissions allow production and the lower the level of emissions the lower will be production. Of course other inputs are also needed but we can hold these constant for the time being. We can assume this production function has the usual properties of concavity.

In the post climate change world the country seeks to solve the following problem:

\[
\max \quad Y_0 + P_1 Y_1 + P_2 Y_2 \\
\text{s.t.} \quad Y_0 = F(Y_1, Y_2).
\]

The new solution is given by

\[Y_{0+}, Y_{1+}, Y_{2+}. \]

The following points may be observed:
We would expect $Y_{2+} > Y_{2s}$. Emissions of GHG should decline as the price rises. But we cannot guarantee that $Y_{1+} > Y_{1s}$. This will depend on how strongly complementary ancillary and GHG emissions are.

Assuming $Y_{1+} > Y_{1s}$ we can formally define ancillary benefits as:

$$\bar{P}(Y_{1+} - Y_{1s})$$

(5)

Note, \bar{P}_1 may be different from P_1. As we go from one solution to another marginal damages from ancillary emissions may change.

The true cost of the GHG mitigation policy is:

$$Y_{0s} - Y_{0+} - P_1(Y_{1+} - Y_{1s}).$$

(6)

Figure 1 shows the solutions diagrammatically. The pre-climate change equilibrium is at γ, with $Y_{2s} = 0$. In the post-climate change situation P_2 becomes positive. Suppose further that Y_{0+} is as shown. Then the trade off between Y_1 and Y_2 is given by AB. If the price of Y_2 is relatively high the new equilibrium will be at α, with less reduction of Y_1. If the price is relatively low the new equilibrium will be at β, with a greater reduction in Y_1. It depends on how much Y_1 and Y_2 are substitutes or complements.

In general we would expect Y_1 and Y_2 to be complements, in which case the new solution has a greater reduction in Y_1. This will be the case, for example, when Y_1 consists of fossil fuel emissions. But it may not be the case when Y_1 represents land...
use. Reductions in GHG gases may require an increase in the use of land making these two factors substitutes.

In order to obtain some numerical values, let us consider a simple macro level model, which assumes that the ‘production function’ in equation (1) is of the is of the Cobb-Douglas form

\[
Y_0 = A(Y_1 - Y)^\alpha (Y_2 - Y)^\beta
\]

(7)

\[A > 0, \ \alpha > 0, \ \beta > 0, \ \text{and} \ \bar{Y}_1, \bar{Y}_2 \text{ are the maximum (no control) values of ancillary emissions and GHG emissions. Note that } \bar{Y}_i \geq Y_i, i = 1, 2. \text{ This means that corner solutions must be investigated.}

The optimal level of output for the problem defined by (3) and (4) is given by

\[
Y_{0+} = K \cdot P_1^{(-\alpha/(1-\alpha-\beta))} P_2^{(-\beta/(1-\alpha-\beta))},
\]

(8)

where \(K\) is

\[
K \equiv (A\alpha\beta(1/(1-\alpha-\beta)),
\]

(9)

and the corresponding values of \(Y_{1+}\) and \(Y_{2+}\) are given by

\[
Y_{1+} = \bar{Y}_1 - \alpha Y_{0+}/P_1,
\]

(10)

\[
Y_{2+} = \bar{Y}_2 - \alpha Y_{0+}/P_2.
\]

(11)

The model can be calibrated using the following data for the UK.\(^{12}\)

\[Y_{0+} = \text{Output of economic activity with climate change policy ($1442 BN in 1999).}^{13}\]

\[\bar{Y}_1 = \text{Maximum ancillary emissions, taken as the sum of } SO_2, NO_X, \text{ and } VOCs \text{ in 1990. It is assumed that these are fifty percent higher than current emissions, which are 6092 thousand metric tons. In other words pre GHG policy had reduced emissions by 50 percent, making the 1990 emissions level equal to 9200 thousand metric tons.}\]

\[P_1 = \text{Price of ancillary emissions. Estimates of damages are in the neighborhood of 4 percent of GDP, which would amount to } $9500/MT, \text{ or } $BN 0.0095 \text{ per thousand tons.}\]

\[P_2 = \text{Price of } CO_2 \text{ emissions. As a rough guide these are taken as } $10/MT, \text{ based on IPCC 2001 studies of mitigation costs to meet plausible targets.}\]

\(^{12}\) Data on emissions are taken from WRI (2000).

\(^{13}\) The model is calibrated with the 1999 level as optimal GDP. Of course in reality this is not the optimal level, but it does not matter much, as it is the variations in GDP we are interested in and choosing this value for calibration makes only a minor difference to the results.
$Y_{1+} = \text{Optimal reduction of level of ancillary emissions from a no control level. This reduction is not known and has to be determined from the model or different values tried.}$

$\bar{Y}_2 = \text{GHG emissions without controls, taken as 1990 level of 563,281 thousand tons of CO}_2.$

$Y_{2+} = \text{Reduction of level of GHG emissions from a no-control level of GHGs (000 MT). This is to be determined within the model or different values tried.}$

In the model, if we knew the values of α and β from independent sources, we could use them to determine the optimal reduction in GHG emissions. It would be with a price of $10/\text{MT of CO}_2$ and the optimal reduction in ancillary emissions with a price of $9500/\text{MT}$. At present we do not know these parameters. Hence we can look at the implications of different levels of reductions in GHG gases and ancillary emissions being the optimal ones. If we assume we know Y_{1+} and Y_{2+} we can calculate the value of α from (10) and that of β from (11).
References

<table>
<thead>
<tr>
<th>Year</th>
<th>Working Paper Series</th>
<th>Title and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUST 1.2002</td>
<td>K. TANO, M.D. FAMINOW, M. KAMUANGA and B. SWALLOW</td>
<td>Using Conjoint Analysis to Estimate Farmers’ Preferences for Cattle Traits in West Africa</td>
</tr>
<tr>
<td>ETA 2.2002</td>
<td>Efrem CASTELNUOVO and Paolo SURICO</td>
<td>What Does Monetary Policy Reveal about Central Bank’s Preferences?</td>
</tr>
<tr>
<td>WAT 3.2002</td>
<td>Duncan KNOWLER and Edward BARBIER</td>
<td>The Economics of a “Mixed Blessing” Effect: A Case Study of the Black Sea</td>
</tr>
<tr>
<td>CLIM 4.2002</td>
<td>Andreas LÖSCHEL</td>
<td>Technological Change in Economic Models of Environmental Policy: A Survey</td>
</tr>
<tr>
<td>VOL 5.2002</td>
<td>Carlo CARRARO and Carmen MARCHIORI</td>
<td>Stable Coalitions</td>
</tr>
<tr>
<td>KNOW 8.2002</td>
<td>Alain DESDOIGTS</td>
<td>Neoclassical Convergence Versus Technological Catch-up: A Contribution for Reaching a Consensus</td>
</tr>
<tr>
<td>NRM 9.2002</td>
<td>Giuseppe DI VITA</td>
<td>Renewable Resources and Waste Recycling</td>
</tr>
<tr>
<td>KNOW 10.2002</td>
<td>Giorgio BRUNELLO</td>
<td>Is Training More Frequent when Wage Compression is Higher? Evidence from 11 European Countries</td>
</tr>
<tr>
<td>ETA 11.2002</td>
<td>Mordecai KURZ, Hehai JIN and Maurizio MOTOLESE</td>
<td>Endogenous Fluctuations and the Role of Monetary Policy</td>
</tr>
<tr>
<td>KNOW 12.2002</td>
<td>Reyer GERLAGH and Marjan W. HOFKES</td>
<td>Escaping Lock-in: The Scope for a Transition towards Sustainable Growth?</td>
</tr>
<tr>
<td>NRM 13.2002</td>
<td>Michele MORETTO and Paolo ROSATO</td>
<td>The Use of Common Property Resources: A Dynamic Model</td>
</tr>
<tr>
<td>CLIM 14.2002</td>
<td>Philippe QUIRON</td>
<td>Macroeconomic Effects of an Energy Saving Policy in the Public Sector</td>
</tr>
<tr>
<td>CLIM 16.2002</td>
<td>Francesco RICCI</td>
<td>Environmental Policy Growth when Inputs are Differentiated in Pollution Intensity</td>
</tr>
<tr>
<td>CLIM 18.2002</td>
<td>László Á. KÓCZY (liv)</td>
<td>The Core in the Presence of Externalities</td>
</tr>
<tr>
<td>CLIM 19.2002</td>
<td>Steven J. BRAMS, Michael A. JONES and D. Marc KILGOUR (liv)</td>
<td>Single-Peakedness and Disconnected Coalitions</td>
</tr>
<tr>
<td>NRM 21.2002</td>
<td>Fausto CAVALLARO and Luigi CIRAOLI</td>
<td>Economic and Environmental Sustainability: A Dynamic Approach in Insular Systems</td>
</tr>
<tr>
<td>CLIM 22.2002</td>
<td>Barbara BUCHNER, Carlo CARRARO, Igor CERSOSIMO and Carmen MARCHIORI</td>
<td>Back to Kyoto? US Participation and the Linkage between R&D and Climate Cooperation</td>
</tr>
<tr>
<td>CLIM 23.2002</td>
<td>Andreas LÖSCHEL and ZhongXIAN ZHANG</td>
<td>The Economic and Environmental Implications of the US Repudiation of the Kyoto Protocol and the Subsequent Deals in Bonn and Marrakech</td>
</tr>
<tr>
<td>ETA 24.2002</td>
<td>Marzio GALEOTTI, Louis J. MACCINI and Fabio SCHIANTARELLI</td>
<td>Inventories, Employment and Hours</td>
</tr>
<tr>
<td>ETA 26.2002</td>
<td>Adam B. JAFFE, Richard G. NEWELL and Robert N. STAVINS</td>
<td>Environmental Policy and Technological Change</td>
</tr>
<tr>
<td>SUST 27.2002</td>
<td>Joseph C. COOPER and Giovanni SIGNORELLO</td>
<td>Farmer Premiums for the Voluntary Adoption of Conservation Plans</td>
</tr>
<tr>
<td>SUST 28.2002</td>
<td>The ANSEA Network</td>
<td>Towards An Analytical Strategic Environmental Assessment</td>
</tr>
<tr>
<td>KNOW 29.2002</td>
<td>Paolo SURICO</td>
<td>Geographic Concentration and Increasing Returns: a Survey of Evidence</td>
</tr>
<tr>
<td>ETA 30.2002</td>
<td>Robert N. STAVINS</td>
<td>Lessons from the American Experiment with Market-Based Environmental Policies</td>
</tr>
</tbody>
</table>
Marco PERCOCO: Staying Together

S.M. CAVANAGH, W. M. HANEMANN and R. N. STAVINS: Muffled Price Signals: Household Water Demand under Increasing-Block Prices
Sudeshna GHOSH BANERJEE and Michael C. MUNGER: Move to Markets? An Empirical Analysis of
Andreas LANGE: Private Firms: The Performance of State-Owned Enterprises and Newly Privatized Firms: Empirical Evidence from Egypt
Mike BURKART, Fausto PANUNZI and Andrei SHLEIFER: Family Firms
Emmanuelle AUROIL, Pierre M. PICARD: Privatizations in Developing Countries and the Government Budget Constraint
Nichole M. CASTATER: Privatization as a Means to Societal Transformation: An Empirical Study of Privatization in Central and Eastern Europe and the Former Soviet Union
Christoph LULSFESMANN: Benevolent Government, Managerial Incentives, and the Virtues of Privatization
Kate BISHOP, Igor FILATOTCHEV and Tomasz MICKIEWICZ: Endogenous Ownership Structure: Factors Affecting the Post-Privatization Equity in Largest Hungarian Firms
Theodora WELCH and Rick MOLZ: How Does Trade Safe Privatization Work?
Evidence from the Fixed-Line Telecommunications Sector in Developing Economies
Alberto P. PETRUCCI: Government Debt, Agent Heterogeneity and Wealth Displacement in a Small Open Economy
Timothy SWANSON and Robin MASON (vi): The Impact of International Environmental Agreements: The Case of the Montreal Protocol
Massimo FLORIO and Katuscia MANZONI: The Abnormal Returns of UK Privatisations: From Underpricing to Outperformance
Nelson LOURENÇO, Carlos RUSSO MACHADO, Maria do ROSÁRIO JORGE and Luis RODRIGUES: An Integrated Approach to Understand Territory Dynamics. The Coastal Alentejo (Portugal)
Peter ZAFFEL and Matti VAINIO (iv): Pathways to European Greenhouse Gas Emissions Trading History and Misconceptions
Pierre COURTIOIS: Influence Processes in Climate Change Negotiations: Modelling the Rounds
Vito FRAGNELLI and Maria Erminia MARINA (viii): Environmental Pollution Risk and Insurance
Laurent FRANCKX (viii): Environmental Enforcement with Endogenous Ambient Monitoring
Timo GOESCHL and Timothy M. SWANSON (viii): Lost Horizons. The noncooperative management of an evolutionary biological system.
Hans KEIDING (viii): Environmental Effects of Consumption: An Approach Using DEA and Cost Sharing
Wietze LISE (iviii): A Game Model of People’s Participation in Forest Management in Northern India
Jens HORBACH: Structural Change and Environmental Kuznets Curves
Martin P. GROSSKOPF: Towards a More Appropriate Method for Determining the Optimal Scale of Production Units
Scott BARRETT and Robert STAVINS: Increasing Participation and Compliance in International Climate Change Agreements
Bansu BAYRAMOGLU LISE and Wietze LISE: Climate Change, Environmental NGOs and Public Awareness in the Netherlands: Perceptions and Reality
Matthieu GLACHANT: The Political Economy of Emission Tax Design in Environmental Policy
Kenn ARIGA and Giorgio BRUNELLO: Are the More Educated Receiving More Training? Evidence from Thailand
Gianfranco FORTE and Matteo MANERA: Forecasting Volatility in European Stock Markets with Non-linear GARCH Models
Geoffrey HEAL: Bundling Biodiversity
Geoffrey HEAL, Brian WALKER, Simon LEVIN, Kenneth ARROW, Partha DASGUPTA, Gretchin DAILY, Paul EHRlich, Karl-Goran MALER, Nils KAUTSKY, Jane LUCHENCEO, Steve SCHNEIDER and David STARRETT: Genetic Diversity and Interdependent Crop Choices in Agriculture
Geoffrey HEAL: Biodiversity and Globalization
Andreas LANGE: Heterogeneous International Agreements – If per capita emission levels matter
Pierre-André JOUVET and Walid OUESLATI: Tax Reform and Public Spending Trade-offs in an Endogenous Growth Model with Environmental Externalities
Anna BOTTASSO and Alessandro SEMBENELLI: Does Ownership Affect Firms’ Efficiency? Panel Data Evidence on Italy
Bernardo BORTOLOTTI and Alessandro SEMBENELLI: Does Ownership Affect Firms’ Efficiency? Panel Data Evidence on Italy
Anna BOTTASSO and Alessandro SEMBENELLI: Does Ownership Affect Firms’ Efficiency? Panel Data Evidence on Italy
Bernardo BORTOLOTTI, Frank DE JONG, Giovanna NICODANO and Ibolya SCHINDELE: Privatization and Stock Market Liquidity
Haruo IMAI and Mayumi HORIE: Pre-Negotiation for an International Emission Reduction Game
Sudeshna GHOSH BANERJEE and Michael C. MUNGER: Move to Markets? An Empirical Analysis of Privatization in Developing Countries
Guillaume GIRMENS and Michel GUILLARD: Privatization and Investment: Crowding-Out Effect vs Financial Diversification
Alberto CHONG and Florencio LÓPEZ-DE-SILANES: Privatization and Labor Force Restructuring Around the World
Nandini GUPTA: Partial Privatization and Firm Performance
François DEGEORGE, Dirk JENTER, Alberto MOEL and Peter TUFANO: Selling Company Shares to Reluctant Employees: France Telecom’s Experience
Isaac OTCHERE: Intra-Industry Effects of Privatization Announcements: Evidence from Developed and Developing Countries

Yannis KATSOUKAKOS and Elisavet LIKOYANNI: Fiscal and Other Macroeconomic Effects of Privatization

Guillaume GIRMENS: Privatization, International Asset Trade and Financial Markets

D. Teja FLOTTO: A Note on Consumption Correlations and European Financial Integration

Ibolya SCHINDELE and Enrico C. PEROTTI: Pricing Initial Public Offerings in Premature Capital Markets: The Case of Hungary

Gabriella CHIESA and Giovanna NICODANO: Privatization and Financial Market Development: Theoretical Issues

Ibolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review

Wietze LISE, Claudia KEMFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market

Laura MARSILIANI and Thomas I. RENSTRÖM: Environmental Policy and Capital Movements: The Role of Government Commitment

Reyer GERLAGH: Induced Technological Change under Technological Competition

Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers

Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Theory

Michele MORETTO: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation
GG 36.2003 Matthieu GLACHANT: Voluntary Agreements under Endogenous Legislative Threats
PRIV 37.2003 Narjess BOURAKRI, Jean-Claude COSSET and Omrane GUEDHAMI: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection
CLIM 38.2003 Rolf GOLUMBEK and Michael HOEL: Climate Policy under Technology Spillovers
KNOW 39.2003 Slim BEN YOUSSEF: Transboundary Pollution, R&D Spillovers and International Trade
CTN 40.2003 Carlo CARRARO and Carmen MARCHIORI: Endogenous Strategic Issue Linkage in International Negotiations
KNOW 42.2003 Timo GOESCHL and Timothy SWANSON: On Biology and Technology: The Economics of Managing Biotechnologies
CLIM 44.2003 Katrin MILLOCK and Céline NAUGES: The French Tax on Air Pollution: Some Preliminary Results on its Effectiveness
PRIV 45.2003 Bernardo BORTOLOTTI and Paolo PINOTTI: The Political Economy of Privatization
SIEV 46.2003 Elbert DUKGRAF and Herman R.J. VOLLEBERGH: Burn or Bury? A Social Cost Comparison of Final Waste Disposal Methods
ETA 47.2003 Jens HORBACH: Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany
CLIM 48.2003 Lori SNYDER, Nolan MILLER and Robert STAVINS: The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing
CTN 50.2003 László A. KOCZY and Luc LAUWERS (lx): The Minimal Dominant Set is a Non-Empty Core-Extension
CTN 51.2003 Matthew O. JACKSON (lx): Allocation Rules for Network Games
CTN 52.2003 Ana MAULEON and Vincent VANNETELBOSCH (lx): Farsightedness and Cautiousness in Coalition Formation
CTN 54.2003 Matthew HAAG and Roger LAGUNOFF (lx): On the Size and Structure of Group Cooperation
CTN 55.2003 Taiji FURUSAWA and Hideo KONISHI (lx): Free Trade Networks
CTN 56.2003 Halis Murat YILDIZ (lx): National Versus International Mergers and Trade Liberalization
CTN 57.2003 Santiago RUBIO and Alistair ULPH (lx): An Infinite-Horizon Model of Dynamic Membership of International Environmental Agreements
KNOW 58.2003 Carole MAIGNAN, Dino PINELLI and Gianmarco I.P. OTTAVIANO: ICT, Clusters and Regional Cohesion: A Summary of Theoretical and Empirical Research
KNOW 59.2003 Giorgio BELLETTINI and Gianmarco I.P. OTTAVIANO: Special Interests and Technological Change
ETA 60.2003 Ronnie SCHÖB: The Double Dividend Hypothesis of Environmental Taxes: A Survey
CLIM 61.2003 Michael FINUS, Ekko van IERLAND and Robert DELLINK: Stability of Climate Coalitions in a Cartel Formation Game
SIEV 63.2003 Alberto PETRUCCI: Taxing Land Rent in an Open Economy
CLIM 64.2003 Joseph E. ALDY, Scott BARRETT and Robert N. STAVINS: Thirteen Plus One: A Comparison of Global Climate Policy Architectures
SIEV 65.2003 Edi DEFRANCESCO: The Beginning of Organic Fish Farming in Italy
SIEV 66.2003 Klaus CONRAD: Price Competition and Product Differentiation when Consumers Care for the Environment
CLIM 68.2003 ZhongXiang ZHANG: Open Trade with the U.S. Without Compromising Canada’s Ability to Comply with its Kyoto Target
KNOW 69.2003 David FRANTZ (lx): Lorenzo Market between Diversity and Mutation
KNOW 70.2003 Ercole SORI (lx): Mapping Diversity in Social History
KNOW 71.2003 Ljiljana DERU SIMIC (lx): What is Specific about Art/Cultural Projects?
KNOW 72.2003 Natalya V. TARANOVA (lx): The Role of the City in Fostering Intergroup Communication in a Multicultural Environment: Saint-Petersburg’s Case
KNOW 73.2003 Kristine CRANE (lx): The City as an Arena for the Expression of Multiple Identities in the Age of Globalisation and Migration
KNOW 74.2003 Kazuma MATOBA (lx): Global Dialogue- Transformation through Transcultural Communication
KNOW 75.2003 Catarina REIS OLIVEIRA (lx): Immigrants’ Entrepreneurial Opportunities: The Case of the Chinese in Portugal
KNOW 76.2003 Sandra WALLMAN (lx): The Diversity of Diversity - towards a typology of urban systems
KNOW 77.2003 Richard PEARCE (lxii): A Biologist’s View of Individual Cultural Identity for the Study of Cities
KNOW 78.2003 Vincent MERK (lxii): Communication Across Cultures: from Cultural Awareness to Reconciliation of the Dilemmas
KNOW 79.2003 Giorgio BELLETTINI, Carlotta BERTI CERONI and Gianmarco I.P. OTTAVIANO: Child Labor and Resistance to Change
ETA 80.2003 Michele MORETTO, Paolo M. PANTEGHINI and Carlo SCARPA: Investment Size and Firm’s Value under Profit Sharing Regulation
IEM 81.2003 Alessandro LANZA, Matteo MANERA and Massimo GIOVANNINI: Oil and Product Dynamics in International Petroleum Markets
CLIM 82.2003 Y. Hossein FARZIN and Jinhua ZHAO: Pollution Abatement Investment When Firms Lobby Against Environmental Regulation
CLIM 83.2003 Giuseppe DI VITA: Is the Discount Rate Relevant in Explaining the Environmental Kuznets Curve?
CLIM 84.2003 Reyer GERLAGH and Wietze LISE: Induced Technological Change Under Carbon Taxes
NRM 85.2003 Rinaldo BRAU, Alessandro LANZA and Francesco PIGLIARU: How Fast are the Tourism Countries Growing? The cross-country evidence
KNOW 86.2003 Elena BELLINI, Gianmarco I.P. OTTAVIANO and Dino PINELLI: The ICT Revolution: opportunities and risks for the Mezzogiorno
SIEV 87.2003 Lucas BRETSCHGHER and Sjak SMULDERS: Sustainability and Substitution of Exhaustible Natural Resources. How resource prices affect long-term R&D investments
CLIM 89.2003 Marzio GALEOTTI: Economic Development and Environmental Protection
CLIM 90.2003 Marzio GALEOTTI: Environment and Economic Growth: Is Technical Change the Key to Decoupling?
CLIM 91.2003 Marzio GALEOTTI and Barbara BUCHNER: Climate Policy and Economic Growth in Developing Countries
ETA 93.2003 Andrea BELTRATTI: Socially Responsible Investment in General Equilibrium
CTN 94.2003 Parkash CHANDER: The γ-Core and Coalition Formation
IEM 95.2003 Matteo MANERA and Angelo MARZULLO: Modelling the Load Curve of Aggregate Electricity Consumption Using Principal Components
IEM 96.2003 Alessandro LANZA, Matteo MANERA, Margherita GRASSO and Massimo GIOVANNINI: Long-run Models of Oil Stock Prices
KNOW 98.2003 John CROWLEY, Marie-Cecile NAVES (lxiii): Anti-Racist Policies in France. From Ideological and Historical Schemes to Socio-Political Realities
KNOW 100.2003 Alaknanda PATEL (lxii): Cultural Diversity and Conflict in Multicultural Cities
KNOW 101.2003 David MAY (lxiii): The Struggle of Becoming Established in a Deprived Inner-City Neighbourhood
KNOW 102.2003 Sébastien ARCAND, Danielle JUTEAU, Sirma BILGE, and Francine LEMIRE (lxiii): Municipal Reform on the Island of Montreal: Tensions Between Two Majority Groups in a Multicultural City
CLIM 103.2003 Barbara BUCHNER and Carlo CARRARO: China and the Evolution of the Present Climate Regime
CLIM 104.2003 Barbara BUCHNER and Carlo CARRARO: Emissions Trading Regimes and Incentives to Participate in International Climate Agreements
CLIM 105.2003 Anil MARKANDYA and Dirk T.G. RÜBBELKE: Ancillary Benefits of Climate Policy
1000 Carlo CARRARO, Alessandro LANZA and Valeria PAPPONETTI: One Thousand Working Papers
(i) This paper was presented at the Workshop “Growth, Environmental Policies and Sustainability” organised by the Fondazione Eni Enrico Mattei, Venice, June 1, 2001
(ii) This paper was presented at the Fourth Toulouse Conference on Environment and Resource Economics on “Property Rights, Institutions and Management of Environmental and Natural Resources”, organised by Fondazione Eni Enrico Mattei, IDEI and INRA and sponsored by MATE, Toulouse, May 3-4, 2001
(iii) This paper was presented at the International Conference on “Economic Valuation of Environmental Goods”, organised by Fondazione Eni Enrico Mattei in cooperation with CORILA, Venice, May 11, 2001
(iv) This paper was presented at the International Conference on “Climate Policy – Do We Need a New Approach?”, jointly organised by Fondazione Eni Enrico Mattei, Stanford University and Venice International University, Isola di San Servolo, Venice, September 6-8, 2001
(v) This paper was presented at the Seventh Meeting of the Coalition Theory Network organised by the Fondazione Eni Enrico Mattei and the CORE, Université Catholique de Louvain, Venice, Italy, January 11-12, 2002
(vi) This paper was presented at the First Workshop of the Concerted Action on Tradable Emission Permits (CATEP) organised by the Fondazione Eni Enrico Mattei, Venice, Italy, December 3-4, 2001
(vii) This paper was presented at the ESF EURESCO Conference on Environmental Policy in a Global Economy “The International Dimension of Environmental Policy”, organised with the collaboration of the Fondazione Eni Enrico Mattei, Acquafredda di Maratea, October 6-11, 2001
(viii) This paper was presented at the First Workshop of “CFEWE – Carbon Flows between Eastern and Western Europe”, organised by the Fondazione Eni Enrico Mattei and Zentrum fur Europäische Integrationsforschung (ZEI), Milan, July 5-6, 2001
(ix) This paper was presented at the Workshop on “Game Practice and the Environment”, jointly organised by Università del Piemonte Orientale and Fondazione Eni Enrico Mattei, Alessandria, April 12-13, 2002
(x) This paper was presented at the ENGIME Workshop on “Mapping Diversity”, Leuven, May 16-17, 2002
(xi) This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications”, organised by the Fondazione Eni Enrico Mattei, Milan, September 26-28, 2002
(xii) This paper was presented at the Eighth Meeting of the Coalition Theory Network organised by the GREQAM, Aix-en-Provence, France, January 24-25, 2003
(xiii) This paper was presented at the ENGIME Workshop on “Communication across Cultures in Multicultural Cities”, The Hague, November 7-8, 2002
(xiv) This paper was presented at the ENGIME Workshop on “Social dynamics and conflicts in multicultural cities”, Milan, March 20-21, 2003
2002 SERIES

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>VOL</td>
<td>Voluntary and International Agreements</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SUST</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Dino Pinelli</td>
</tr>
<tr>
<td>MGMT</td>
<td>Corporate Sustainable Management</td>
<td>Andrea Marsanich</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

2003 SERIES

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>