Credible Group-Deviation in Multi-Partner Matching Problems

Hideo Konishi and M. Utku Ünver

NOTA DI LAVORO 115.2003

DECEMBER 2003
CTN – Coalition Theory Network

Hideo Konishi, Department of Economics, Boston College
M. Utku Ünver, Department of Economics, Koç University

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=486087

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Credible Group-Deviation in Multi-Partner Matching Problems

Summary

It is known that in two-sided many-to-many matching problems, pairwise-stable matchings may not be immune to group deviations, unlike in many-to-one matching problems (Blair 1988). In this paper, we show that pairwise stability is equivalent to credible group stability when one side has responsive preferences and the other side has categorywise-responsive preferences. A credibly group-stable matching is immune to any “executable” group deviations with an appropriate definition of executability. Under the same preference restriction, we also show the equivalence between the set of pairwise-stable matchings and the set of matchings generated by coalition-proof Nash equilibria of an appropriately defined strategic-form game.

Keywords: Multi-partner matching problem, Pairwise stable matching network, Credible group deviation

JEL: C71, C72, C78, J41

We are most grateful to two anonymous referees of the journal for their exceptionally high-quality services. One referee pointed out an error in one of our results in the first version. The other referee’s detailed constructive criticisms led to a completely revised version. Conversations and communications with Al Roth and Federico Echenique were very useful. We thank Bhaskar Dutta, Jordi Massó, Eiichi Miyagawa, William Thomson, Anne van den Nouweland, and the participants of conferences and seminars at BC, Rochester, UBC, Duke, Rice, SMU, Toronto, Brown, and Osaka. We also thank Margarita Sapozhnikov for her research assistance. Any errors are our own responsibility. Ünver gratefully acknowledges the support from the NSF.

Address for correspondence:

Hideo Konishi
Department of Economics
Boston College
140 Commonwealth Ave.
Chestnut Hill
MA 02467, USA
Phone: +1 617 552 1209
Fax: +1 617 552 2308
E-mail: hideo.konishi@bc.edu
1 Introduction

Following the success of the National Residency Matching Program (NRMP) in stabilizing the United States hospital-intern market, the United Kingdom also adopted centralized matching procedures in the markets for medical internships in the 1960s. However, there are two important differences between the UK programs and their North American counterparts (Roth 1991). First, the UK medical intern markets are organized regionally rather than nationally: in different regions, different algorithms were adopted by central matching programs. Many of those were abandoned after several years and replaced by new algorithms. An intriguing observation here is that the abandoned algorithms all produced pairwise-unstable matchings and their successor algorithms all produced pairwise-stable matchings. One region adopted a pairwise-stable matching algorithm from the start, and it has been used successfully since. Roth (1991) suggested that this natural experiment in the UK markets proved the robustness of pairwise-stable matchings.

Second, in the UK markets, each medical student is required to complete two internships, one medical and one surgical, in a period of twelve months, to be eligible for full registration as doctors (no such categories exist in the US). Each internship lasts for six months. Consultants in teaching hospitals seek some number of students to fill internships in either medicine or surgery. Thus, given the requirement of UK interns to experience both medical and surgical positions, each regional market in the UK needs to be modeled as a “special” two-sided many-to-two matching problem, unlike in the US market. Even in this problem, the Gale-Shapley deferred-acceptance algorithms (Gale and Shapley 1962) yield pairwise-stable matchings under a preference restriction (Roth 1984b, 1985b; Blair 1988). However, this outcome may no longer be group-stable in a many-to-two matching problem (Blair 1988; Roth 1991). This shows a clear contrast with a many-to-one matching market like the US hospital intern market. Although a pairwise-stable matching is required to be immune to only one- or two-agent deviations, Roth (1984a) showed that if a larger size coalition can deviate from a matching, then a coalition of size one or two can also deviate in many-to-one matching problem. Thus, a pairwise-stable matching is also immune to group deviations. Hence, market stabilization by introduction of centralized matching programs is well justified. How-

1 It is well known that an introduction of the National Residency Matching Program (NRMP) was a dramatic success in stabilizing the US hospital-intern market (see Roth 1984a; Roth and Sotomayor 1990; and Roth and Peranson 1998). Roth (1984a) demonstrated that the NRMP matching mechanism is equivalent to the Gale-Shapley firm-optimal stable mechanism in the many-to-one matching problem, which produces a pairwise-stable matching under responsive preferences.

2 In the UK market, consultants rather than hospitals are the agents who hire medical students.
ever, in many-to-two (-many) matching problems, there can be a group deviation from
a pairwise-stable matching that improves the payoff of every member of the deviation.
Thus pairwise-stable matchings are not even Pareto-efficient. This creates a puzzle:
Why is the pairwise-stable matching so robust in the UK markets?

In this paper, we provide theoretical support for the robustness of pairwise stabil-
ity allowing for deviations by groups in many-to-many matching problems. We first
introduce an appropriate definition of a group deviation in many-to-many matching
problems. However, there is often no group-stable matching, i.e., a matching that is
immune to any group deviations in many-to-many matching problems. This may seem
problematic, but it is not bad news, since a closer look at possible group deviations
from a pairwise-stable matching reveals that these deviations are not credible in a cer-
tain way. Even if a group of agents would benefit from deviating by reorganizing their
partnerships, some members may not have incentive to follow the suggested reorgani-
ization completely. Consider the following situation. A group is somehow organized,
and the members of the group communicate with each other about a deviation plan,
and they agree on carrying it out the next day without letting outsiders know about
the plan. In the plan, it has been suggested to each of the group’s members that she
should discontinue some existing partnerships while keeping others and forming some
new partnerships with other members. Do all the members follow the suggestion?
Some members may choose to follow the plan only partially. For example, it may be
even more profitable for some of them not to form some of the suggested partnerships,
but instead to keep some existing partnerships they were told to discontinue. In such a
case, the suggested group deviation cannot be carried out successfully (unless a group
can form a binding agreement). In this case, we say that these deviations are not
“executable.” More precisely: an executable group deviation is a deviation with a pro-
posed matching that specifies each member’s partners and is pairwise-stable within the
members of the coalition, assuming outsiders of the coalition are passive agents.3 We
say that a matching is credibly group-stable if it is immune to any executable group
deviation.

The first main result of this paper is that the set of credibly group-stable matchings
is equivalent to the set of pairwise-stable matchings when one side has responsive
preferences and the other side has categorywise-responsive preferences (Theorem 1).
This domain is natural in the sense that it is the simplest preference domain in the

3Pairwise stability within the deviation group with passive outsiders prevents the following two
cases of possible further deviations: a member of the coalition may not want to form some of the links
she is supposed to form according to the plan, and she may keep some of the links with outsiders she
was told to discontinue; or a pair of members of the group, who are supposed to discontinue links with
each other according to the plan, may not go along with the recommendation.
UK hospital-intern markets based on agents’ preferences over individuals. As in the US hospital-intern market, agents submit their preferences over individual partners (interns submit preference rankings over individual consultants in each category), not over subsets of partners.

Credible group stability requires only that no group deviation from a matching is executable. However, there is no guarantee that an executable group deviation itself will be immune to further executable deviations. Thus, to be consistent, game theorists may say that credibility of group deviation should be defined recursively: a deviation is said to be credible if it is immune to further credible deviations. In strategic-form games, a strategy profile is said to be a coalition-proof Nash equilibrium (Bernheim, Peleg, and Whinston 1987) if it is immune to any credible deviation in this sense. Our second result shows that the set of matchings generated as outcomes of the coalition-proof Nash equilibria of a strategic-form game appropriately generated from a many-to-many matching problem coincides with the set of credibly group-stable matchings of the same matching problem in the same preference domain as in Theorem 1 (Theorem 2). Theorems 1 and 2 provide justifications for Roth’s (1991) observation of the UK medical intern markets.

The rest of the paper is organized as follows. In Section 2, we introduce the model and define traditional solution concepts in the literature as well as our new solution concept, credible group stability. We provide examples that illustrate the differences between these concepts. In Section 3, we start with a weak preference restriction, substitutability (Kelso and Crawford 1982). We first show that a credibly group-stable matching is pairwise-stable (Proposition 1), while a pairwise-stable matching may not be credibly group-stable as long as one side has substitutable preferences even if the other side has responsive preferences (Proposition 2). In Section 3, we prove the equivalence between pairwise stability and credible group stability if one side has responsive preferences and the other has categorywise-responsive preferences (Theorem 1). However, when both sides have categorywise-responsive preferences, the equivalence result may fail (Example 5), and even credibly group-stable matching may not exist (Example 6). In Section 4, we consider a natural strategic-form game of

4 A coalition-proof Nash equilibrium is a strategy profile that is immune to any credible strategic coalitional changes in the members’ strategies, and the credibility of strategic coalitional deviations is defined recursively in a consistent manner (see Bernheim, Peleg, and Whinston 1987). Our equivalence result gives us another reason that our non-characteristic function approach is more preferable than the characteristic function approach in matching problems. The counterpart of a coalition-proof Nash equilibrium in a characteristic function form game is the credible core in Ray (1989) that checks credibility of coalitional deviations recursively. However, as is shown in Ray (1989), the core and the credible core are equivalent in characteristic function form games. Ray’s remarkable result also motivates our usage of non-characteristic function form games.
many-to-many matching problems and show that the set of the matchings generated through the coalition-proof Nash equilibria of this game, the set of pairwise-stable matchings, and the set of credibly group-stable matchings are all equivalent under the same preference domain as in Section 3 (Theorem 2). Section 5 concludes the paper with an application of our results in one-sided matching markets.

1.1 Related Literature

The most closely related paper is an independent work by Echenique and Oviedo (2003) on many-to-many matching problems. They use setwise stability as defined by Roth (1984b) as their solution concept. A setwise-stable matching is a matching that is immune to any group deviations in which participating members have no incentive to discontinue any partnership after the deviation. One of the main results in Echenique and Oviedo (2003) is that if one side has substitutable preferences and the other has “strongly substitutable” preferences, then pairwise stability and setwise stability are equivalent. Our main result states that if one side has categorywise-responsive preferences and the other side has responsive preferences, then pairwise-stability and credible group-stability are equivalent. Although these two result may appear similar, they have no logical relationship with each other, since neither solution concepts nor preference domains in these two statements are the same. Setwise stability is a stronger solution concept than our credible group stability, since the executability requirement rules out more group deviations than individual stability. In the general preference domain, we have \(\text{group-stable set} \subseteq \text{setwise-stable set} \subseteq \text{credibly group-stable set} \subseteq \text{pairwise-stable set} \). Although categorywise-responsive preferences belong to a family of substitutable preferences, strongly substitutable preferences have no logical relationship with responsive preferences (with quotas).

In many-to-one matching problems with responsive preferences, a randomized my-

\(^5\) Indeed, as Sotomayor (1999) pointed out in her example (see Example 3 below), the set of setwise-stable matchings may be empty under separable preferences (which is a \textit{weaker} requirement than responsive preferences).
opic adjustment process also yields a pairwise-stable matching with probability one (see Roth and Vande Vate 1990). In our separate note (Konishi and Ünver 2004), we show that a similar convergence result still holds in many-to-many matching problems if agents have categorywise-responsive preferences. This result justifies our characterization of the whole set of pairwise-stable matchings instead of the optimal matchings generated by the Gale-Shapley deferred acceptance algorithms.

2 The Model

2.1 Many-to-Many Matching Problem

Let F and W be finite sets of firms and workers with $F \cap W = \emptyset$. For any agent $i \in F \cup W$, the set of potential partners M_i is the set of agents on the other side: i.e., $M_i = W$ if $i \in F$, and $M_i = F$ if $i \in W$. We define a preference profile by $\succeq = (\succeq_F, \succeq_W) = ((\succeq_i)_{i \in F \cup W})$, where \succeq_i is a preference ordering over 2^{M_i}. We also use notations $\succeq = (\succeq_F, \succeq_W)$, where \succeq_F and \succeq_W denote preference profiles for F and W, respectively. We assume throughout the paper that for any agent $i \in F \cup W$, agent i’s preference relation \succeq_i is strict; i.e., \succeq_i is a linear order, meaning that for any $S, T \subseteq M_i$, $S \succeq_i T$ implies that $S = T$ or $S \succ_i T$. A many-to-many matching problem is a list (F,W,\succeq). We fix a many-to-many matching problem (F,W,\succeq) in the rest of the paper. A matching μ is a mapping from the set $F \cup W$ into the set of all subsets of $F \cup W$ such that for all $i, j \in F \cup W$: (i) $\mu(i) \in 2^{M_i}$, and (ii) $j \in \mu(i)$ if and only if $i \in \mu(j)$.

2.2 Preference Restrictions

The most commonly used preference restriction in matching theory is that of responsiveness with quota. Agent i’s preference relation \succeq_i is responsive with quota if there is a positive integer q_i such that for any $T \subset M_i$ with $|T| < q_i$, and any $j, j' \in M_i \setminus T$,
we have

(i) \(T \cup \{ j \} \succ_i T \cup \{ j' \} \iff j \succ_i j' \) and

(ii) \(T \cup \{ j \} \succ_i T \iff j \succ_i \emptyset, \)

and for any \(T \subseteq M_i \) with \(|T| > q_i \), we have \(\emptyset \succ_i T \) (Roth 1985a). A preference profile \(\succeq_T \) is responsive if for any \(i \in T, \succeq_i \) is responsive with some quota \(q_i \).

Substitutability is a weaker preference restriction than responsiveness, yet some of the important results obtained with responsive preferences are preserved under substitutability: it still guarantees the existence of pairwise-stable matchings and the validity of the polarization results in many-to-many matching problems (Roth 1984b). For any \(i \in F \cup W \), and any \(S \subseteq M_i \), let \(Ch_i(S) \subseteq S \) be such that \(Ch_i(S) \succeq_i T \) for any \(T \subseteq S \). Agent \(i \)'s preference relation \(\succeq_i \) is substitutable if for any \(S \subseteq M_i \) and any distinct \(j, j' \in Ch_i(S) \), we have \(j \in Ch_i(S\setminus \{ j' \}) \) (Kelso and Crawford 1982). For any \(T \subseteq F \cup W \), a preference profile \(\succeq_T \) is substitutable if for any \(i \in T, \succeq_i \) is substitutable.

We now introduce a new preference restriction that is stronger than substitutability but weaker than responsiveness with quota. This preference restriction retains the virtues of responsive preferences yet makes it possible to analyze a market like the UK hospital-intern market. We first introduce the notion of categories of partners. For each agent \(i \in F \cup W \), let \(K_i \) be a finite set called the set of categories for \(i \), and let \(\{M_i^k\}_{k \in K_i} \) be a partition of \(M_i \). Agent \(i \)'s preference relation \(\succeq_i \) is separable across categories with respect to \((K_i, \{M_i^k\}_{k \in K_i}) \) if for any category \(k \in K_i \), any \(S, T \subseteq M_i^k \), and any \(I, J \subseteq M_i \setminus M_i^k \), we have

\[
S \cup I \succeq_i T \cup I \iff S \cup J \succeq_i T \cup J.
\]

Agent \(i \)'s preference relation \(\succeq_i \) is categorywise-responsive with quotas if there are a set of categories \(K_i \), a partition \(\{M_i^k\}_{k \in K_i} \) of \(M_i \), and a vector of quotas \(q_i = (q_i^k)_{k \in K_i} \) such that (i) \(\succeq_i \) is separable across categories with respect to \((K_i, \{M_i^k\}_{k \in K_i}) \), and (ii) in each category \(k \in K_i \), the restriction of \(\succeq_i \) to \(2^{M_i^k} \) is responsive with quota \(q_i^k \).}

8 Without confusion, we abuse notations: \(j \succeq_i j', \emptyset \succeq_i \emptyset \) and \(\emptyset \succeq_i \{ j' \}, \{ j \} \succeq_i \emptyset \) respectively, for any \(j, j' \in M_i \).

9 Note that under a strict preference ordering, Condition (ii) implies \(T \succ_i T \cup \{ j \} \iff \emptyset \succ_i j \) as well. Also note that Condition (ii) is commonly referred to as “separability” in the literature.

10 A regional UK medical intern market can be modeled as a many-to-many matching problem where one side has responsive preferences (consultants), whereas the other has categorywise-responsive preferences with quotas (interns). Let \(F \) and \(W \) denote consultants and interns, respectively. Each consultant \(j \in F \) specializes either in medicine or surgery, i.e., \(F \) is partitioned into \(F^m \) and \(F^s \). No consultant \(j \) categorizes interns, and thus she can have responsive preferences with quota \(q_j \) that is the number of positions \(j \) has. On the other hand, each intern \(i \in I \) has category set \(K_i = \{ m, s \} \).
preference profile \(\succeq_T \) is categorywise-responsive if for any \(i \in T, \succeq_i \) is categorywise-responsive with some quota vector \(q_i = (q_i^k)_{k \in K_i} \).

In independent work, Echenique and Oviedo (2003) introduced another preference restriction. Agent \(i \)'s preference \(\succeq_i \) is strongly substitutable if for any \(S, T \subseteq M_i \) with \(S \succ_i T \), \(j \in Ch_i(S \cup \{j\}) \) implies \(j \in Ch_i(T \cup \{j\}) \). There is no logical relationship between responsiveness and strong substitutability (Echenique and Oviedo 2003). A preference profile \(\succeq_T \) is strongly substitutable if for any \(i \in T, \succeq_i \) is strongly substitutable.

2.3 Solution Concepts

In this subsection, we discuss solution concepts used in this paper. First, for any agent \(i \in F \cup W \), we say that set \(S \subseteq M_i \) is individually rational for \(i \) if \(S \succeq_i \emptyset \), and is individually stable for \(i \) if \(Ch_i(S) = S \). Obviously, individual stability implies individual rationality, but not vice versa. We also say that a matching \(\mu \) is individually rational (individually stable) if \(\mu(i) \) is individually rational (individually stable) for any \(i \in F \cup W \). We say that for any agent \(i \in F \cup W, j \in M_i \) is acceptable if \(j \succeq_i \emptyset \). Although an individually stable set contains only acceptable partners, an individually rational set may contain unacceptable partners. The central solution concept in the (two-sided) matching literature is pairwise stability. A matching \(\mu \) is pairwise-stable if (i) for any \(i \in F \cup W \), \(Ch_i(\mu(i)) = \mu(i) \), i.e. \(\mu(i) \) is individually stable, and (ii) for any \(i, j \in F \cup W \) with \(i \in M_j \), \(j \in M_i \), and \(j \notin \mu(i) \), we have \(j \in Ch_i(\mu(i) \cup \{j\}) \) implies \(i \notin Ch_j(\mu(j) \cup \{i\}) \). For any matching \(\mu \), if there is an agent \(i \) with \(Ch_i(\mu(i)) \neq \mu(i) \), then we say that individual \(i \) blocks \(\mu \), and if there is a firm \(f \in F \) and worker \(w \in W \) \(\mu(f) \) with \(w \in Ch_f(\mu(f) \cup \{w\}) \) and \(f \in Ch_w(\mu(w) \cup \{f\}) \), then we say that pair \((f, w)\) blocks \(\mu \).

We will introduce two group stability concepts in characteristic function form games. A matching \(\mu' \) dominates a matching \(\mu \) via coalition \(T \subseteq F \cup W \) if (i) for all \(i \in T, j \in \mu'(i) \) implies \(j \in T \), and (ii) \(\mu'(i) \succ_i \mu(i) \) for all \(i \in T \). Condition (i) with \(M_i^m = F^m \) and \(M_i^s = F^s \), and she also has a unit quota for each category, i.e. \(q_i^m = q_i^s = 1 \). Using substitutability, the UK medical intern markets can be formulated as a many-to-two matching problem without introducing two categories (see Roth 1991). However, to use this formulation, we need to give up the equivalence between pairwise stability and credible group stability (see Section 3).

11 In the UK markets, matching mechanisms utilize students’ preference orderings over individual consultants in each category. Thus these mechanisms implicitly assume that the preference profile of interns is categorywise-responsive.

12 Imagine that \(f \in F \) has preference ordering \(\{w_1, w_2\} \succ_f \{w_1, w_3\} \succ_f \{w_1\} \succ_f \{w_2\} \succ_f \{w_3\} \) \(\emptyset \). This preference ordering is strongly substitutable, while it is not responsive with quota two. For the other direction, see Example 3 below.
requires that after deviation, members of T can be matched only with other members of T (characteristic function form game). The \textbf{core} of the problem is the set of matchings that are not dominated by any other matching. A matching μ' \textbf{weakly dominates} a matching μ \textbf{via coalition} $T \subseteq F \cup W$ if (i) for any $i \in T$, $j \in \mu'(i)$ implies $j \in T$, (ii) we have $\mu'(i) \succeq_i \mu(i)$ for all $i \in T$, and (iii) $\mu'(i) \succ_i \mu(i)$ holds for some $i \in T$. The \textbf{weak core} of the problem is the set of matchings that are not weakly dominated by any other matching.

As we will see below, the characteristic function approach has a limitation in the many-to-many matching problem. Other solution concepts do not assume that deviators need to discontinue all partnerships with outsiders. Let μ be a matching. A matching μ' is \textbf{obtainable from} μ \textbf{via deviation by} T if for any $i \in F \cup W$ and any $j \in M_i$, (i) $j \in \mu'(i) \setminus \mu(i)$ implies $\{i,j\} \subseteq T$, and (ii) $j \in \mu(i) \setminus \mu'(i)$ implies $\{i,j\} \cap T \neq \emptyset$. A \textbf{group deviation} from μ is a group and a matching pair (T, μ') such that (i) μ' is obtainable from μ via T, and (ii) for any $i \in T$ we have $\mu'(i) \succeq_i \mu(i)$. We say a matching μ is \textbf{group-stable} if μ is immune to any group deviation from μ.13

We now discuss two notions of credibility of group deviations. The first notion is setwise stability introduced by Roth (1985b) and Sotomayor (1999). A group deviation (T, μ') from μ is \textbf{individually stable} if μ' is an individually stable matching. A matching μ is \textbf{setwise-stable} if μ is immune to any individually stable group deviation. The second notion, which is newly introduced in this paper, is a stronger credibility requirement than setwise stability. A group deviation (T, μ') from μ is \textbf{executable} if

(i) for any $i \in T$, $Ch_i(\mu'(i) \cup (\mu(i) \setminus T)) = \mu'(i)$, and

(ii) for any $i, j \in T$ with $j \in M_i \setminus \mu'(i)$, $j \in Ch_i(\mu'(i) \cup (\mu(i) \setminus T) \cup \{j\})$ implies $i \notin Ch_j(\mu'(j) \cup (\mu(j) \setminus T) \cup \{i\})$.

This requires that μ' is pairwise-stable within the members of T assuming that outsiders are passive players. That is, individual stability requires only that no member of T has an incentive to discontinue some of partnerships after a deviation, whereas executability requires that after the deviation, the new matching is pairwise-stable within T assuming that the outsiders are passive agents. A matching μ that is immune to any executable group deviation is called a \textbf{credibly group-stable} matching. Credible group stability is a weaker solution than setwise stability, since credibility requirements on group deviations are more demanding in the case of executability.

13Group stability is originally defined for many-to-one matching problems (see definition 5.4 in Roth and Sotomayor 1990). We extend this definition to many-to-many matching problems. Group stability is also the same concept as \textit{strong stability} in network games as defined in Jackson and van den Nouweland (2001).
2.4 Core and Weak Core

It is well known that in one-to-one matching problems the core and the pairwise-stable set coincide, i.e., the set of pairwise-stable matchings is equivalent to the core and to the weak core. It is also true that in many-to-one matching problems, the set of pairwise-stable matchings and the weak core coincide, although the core may be bigger. This equivalence result no longer holds in many-to-many matching problems. The following simple example (a simplified version of Example 2.6 in Blair 1988) illustrates the difference between the set of pairwise-stable matchings and the weak core in many-to-many matching problems.

Example 1 Consider a many-to-many matching problem with $F = \{f_1, f_2\}$ and $W = \{w_1, w_2\}$. Quota for the number of matches for each agent is two. Their preferences are given as follows:

<table>
<thead>
<tr>
<th></th>
<th>f_1</th>
<th>f_2</th>
<th>w_1</th>
<th>w_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>${w_1}$</td>
<td>${w_2}$</td>
<td>${f_2}$</td>
<td>${f_1}$</td>
<td></td>
</tr>
<tr>
<td>${w_1, w_2}$</td>
<td>${w_2, w_1}$</td>
<td>${f_2, f_1}$</td>
<td>${f_1, f_2}$</td>
<td></td>
</tr>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>${w_2}$</td>
<td>${w_1}$</td>
<td>${f_1}$</td>
<td>${f_2}$</td>
<td></td>
</tr>
</tbody>
</table>

In this game, the unique pairwise-stable matching is matching μ with $\mu(i) = \emptyset$ for all $i \in F \cup W$, and the unique weak core matching is a complete matching μ' with $\mu'(i) = M_i$ for all $i \in F \cup W$. It is easy to see that empty matching μ is the unique pairwise-stable matching, since for each pair (i, j) we have either $\emptyset \succ_i j$ or $\emptyset \succ_j i$ and preferences are responsive with quota 2. It is also easy to see that the complete matching μ' is the only weak core matching, since μ' is strictly individually rational, and no group deviation can improve upon μ'. \Box

In many-to-many matching problems, the weak core does not make much sense. This can be seen from the fact that in the above example the weak core matching μ' is not even pairwise-stable. This is because, in the definition of weak core or core, a group deviation T (including a single agent deviation) has to act within T, and the members have to discontinue all the partnerships with members of $(F \cup W) \setminus T$. For example, consider f_1. Under μ', f_1 is matched with w_1 and w_2. She wants to discontinue a partnership with w_2, but wants to keep a partnership with w_1. In the definition of weak core, if f_1 alone wants to deviate, f_1 needs to discontinue all partnerships. But why should w_1 need to discontinue her partnership with f_1 in response to f_1’s discontinuing her partnership with w_2? It is not clear, especially because w_1 does not care what happens to a match between f_1 and w_2: there is no such spillover or externality in
this game. Actually, this is precisely why the weak core and the core are not the same in many-to-one matching problems even under strict preference orderings. Without including unaffected agents in a group deviation, a pair of agents cannot form a new partnership. However, in the many-to-one matching problems, it is still possible to argue that pairwise stability is a relevant game-theoretic concept, since we can keep the equivalence between the set of pairwise-stable matchings and the weak core. In many-to-many matching problems, the problem with the weak core is more severe, as we have seen. Our observation points out the limitation of describing a matching problem as a characteristic function form game.

Before closing this subsection, we provide an example that has an empty core in a many-to-many matching problem: the core may be empty in the characteristic function form game even under responsive preferences.

Example 2 Consider a many-to-many matching problem with $F = \{f_1, f_2, f_3, f_4, f_5\}$ and $W = \{w_1, w_2, w_3, w_4, w_5\}$. Quotas are all two. The preference profile is responsive and given as follows:

$$
\begin{array}{cccccccc}
& f_1 & f_2 & f_3 & f_4 & f_5 \\
\{w_2, w_3\} & \{w_3, w_1\} & \{w_1, w_2\} & \{w_2\} & \{w_1\} \\
\{w_2, w_4\} & \{w_3, w_5\} & \{w_1\} & \{w_2, w_1\} & \{w_1, w_2\} \\
\{w_3, w_4\} & \{w_1, w_5\} & \{w_2\} & \emptyset & \emptyset \\
\{w_2\} & \{w_3\} & \{w_1, w_3\} & \vdots & \vdots \\
\{w_2, w_5\} & \{w_3, w_4\} & \{w_2, w_3\} & \emptyset & \emptyset \\
\{w_3\} & \{w_1\} & \emptyset & \emptyset & \emptyset \\
\{w_3, w_5\} & \{w_1, w_4\} & \vdots & \vdots \\
\{w_2, w_1\} & \{w_3, w_2\} & \emptyset & \emptyset & \emptyset \\
\{w_4\} & \{w_5\} & \emptyset & \emptyset & \emptyset \\
\{w_4, w_5\} & \{w_5, w_4\} & \emptyset & \emptyset & \emptyset \\
\{w_3, w_1\} & \{w_1, w_2\} & \emptyset & \emptyset & \emptyset \\
\emptyset & \emptyset & \emptyset & \emptyset & \emptyset \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array}
$$
There are nine individually rational matchings\(\{f_1, f_4\}, \{f_2, f_5\}, \{f_3\}, \{f_2\}, \{f_1\}\)

\[
\begin{array}{cccccc}
 w_1 & w_2 & w_3 & w_4 & w_5 \\
 \{f_1, f_4\} & \{f_2, f_5\} & \{f_3\} & \{f_2\} & \{f_1\} \\
 \{f_1\} & \{f_2\} & \{f_3, f_1\} & \{f_2, f_1\} & \{f_1, f_2\} \\
 \{f_1, f_5\} & \{f_2, f_4\} & \{f_3, f_2\} & \emptyset & \emptyset \\
 \{f_1, f_2\} & \{f_2, f_3\} & \emptyset & \emptyset & \emptyset \\
 \{f_4\} & \{f_5\} & \emptyset & \emptyset & \emptyset \\
 \{f_4, f_5\} & \{f_5, f_4\} & \emptyset & \emptyset & \emptyset \\
 \{f_1, f_3\} & \{f_2, f_1\} & \emptyset & \emptyset & \emptyset \\
 \emptyset & \emptyset & \emptyset & \emptyset & \emptyset \\
 \emptyset & \emptyset & \emptyset & \emptyset & \emptyset \\
\end{array}
\]

Choices in bold characters are the relevant choices that compose individually rational matchings. Note that for each \(k \in \{1, 2, 3\}\), firm \(f_k\) does not want to be matched with \(\{w_k\}\), but for each \(\ell \in \{1, 2, 3\} \setminus \{k\}\), \(\{w_\ell, w_k\}\) is individually rational for \(f_k\). However, for each \(k \in \{1, 2, 3\}\), worker \(w_k\) wants to be matched with \(\{f_k\}\), and for each \(\ell \in \{1, 2, 3\} \setminus k\), worker \(w_\ell\) does not mind being matched with \(\{f_k, f_\ell\}\) (which is a strictly worse match than \(\{f_k\}\)), but she does not want to be matched with \(\{f_\ell\}\). Note also that firms \(f_1\) and \(f_2\) (workers \(w_1\) and \(w_2\)) do not want to be matched with \(\{w_5\}\) and \(\{w_4\}\) (\(\{f_5\}\) and \(\{f_4\}\)), respectively, but each of them does not mind being matched with the partner set \(\{w_4, w_5\}\) (\(\{f_4, f_5\}\)), although this is a less favorable partner set. We will show that the core of this problem is empty. Inspecting individually rational matchings will be sufficient for determining the core, since a core matching is individually rational. There are nine individually rational matchings \((\mu_1, ..., \mu_9)\) in this example."}\(^\text{14}\) We list them as follows:

\[
\begin{align*}
\mu_1(f_1) &= \{w_2, w_1\}, \mu_1(f_2) = \{w_1, w_2\}, \mu_1(f_3) = \mu_1(f_4) = \mu_1(f_5) = \emptyset; \\
\mu_2(f_2) &= \{w_3, w_2\}, \mu_2(f_3) = \{w_2, w_3\}, \mu_2(f_1) = \mu_2(f_4) = \mu_2(f_5) = \emptyset; \\
\mu_3(f_1) &= \{w_3, w_1\}, \mu_3(f_3) = \{w_1, w_3\}, \mu_3(f_2) = \mu_3(f_4) = \mu_3(f_5) = \emptyset; \\
\mu_4(f_1) &= \{w_3, w_1\}, \mu_4(f_2) = \{w_1, w_2\}, \mu_4(f_3) = \{w_2, w_3\}, \mu_4(f_4) = \mu_4(f_5) = \emptyset; \\
\mu_5(f_1) &= \{w_2, w_1\}, \mu_5(f_2) = \{w_3, w_2\}, \mu_5(f_3) = \{w_1, w_3\}, \mu_5(f_4) = \mu_5(f_5) = \emptyset; \\
\mu_6(f_1) &= \{w_4, w_5\}, \mu_6(f_2) = \{w_5, w_4\}, \mu_6(f_3) = \mu_6(f_4) = \mu_6(f_5) = \emptyset; \\
\mu_7(f_4) &= \{w_2, w_1\}, \mu_7(f_5) = \{w_1, w_2\}, \mu_7(f_1) = \mu_7(f_2) = \mu_7(f_3) = \emptyset; \\
\mu_8(f_1) &= \{w_4, w_5\}, \mu_8(f_2) = \{w_5, w_4\}, \mu_8(f_3) = \emptyset, \mu_8(f_4) = \{w_2, w_1\}, \mu_8(f_5) = \{w_1, w_2\}; \\
\mu_9(f_1) &= \mu_9(f_2) = \mu_9(f_3) = \mu_9(f_4) = \mu_9(f_5) = \emptyset;
\end{align*}
\]

None of the above matchings is in the core, although matching \(\mu_9\) is the unique

14 The proof is available upon request.
pairwise-stable matching. For each individually rational matching, there is a matching that dominates it via a coalition: \(\mu_1 \rightarrow \{f_2,f_3,w_2,w_3\} \ \mu_2, \ \mu_2 \rightarrow \{f_1,f_3,w_1,w_3\} \ \mu_3, \ \mu_3 \rightarrow \{f_1,f_2,w_1,w_2\} \ \mu_1, \ \mu_4 \rightarrow \{f_1,f_2,w_4,w_5\} \ \mu_6, \ \mu_5 \rightarrow \{f_4,f_5,w_1,w_2\} \ \mu_7, \ \mu_6 \rightarrow \{f_1,f_2,f_3,w_1,w_2,w_3\} \ \mu_5, \ \mu_7 \rightarrow \{f_1,f_2,f_3,w_2,w_3\} \ \mu_4, \ \mu_8 \rightarrow \{f_2,f_3,w_2,w_3\} \ \mu_2, \ \) and \(\mu_9 \) is dominated by any other individually rational matching via the coalition of matched agents. Thus, the core (and the weak core) is empty.

2.5 Group Stability, Setwise Stability, and Credible Group Stability

The main problem is that in a characteristic function form game, the ability of a coalition is limited to the set of matchings within the coalition. Group deviations give more power to deviators by allowing them to keep existing partnerships if they wish.

Although group stability is a natural concept, unfortunately, the set of group-stable matchings may be empty in many-to-many matching problems. It is indeed empty in Example 1, although it is a very simple setup. A pair \((F \cup W, \mu')\) is a group deviation from the unique pairwise-stable matching \(\mu\), and since a group-stable matching must be pairwise-stable, there is no group-stable matching in this problem. Thus, we need to discuss credibility of group deviations (see Section 2.3 for definitions).

It is easy to see that the group deviation \((F \cup W, \mu')\) from \(\mu\) is not individually stable: agents are matched with unacceptable partners. This implies that, in Example 1, the unique pairwise-stable matching is setwise-stable, and we can get around the nonexistence problem of a group-stable matching. However, it is not always the case under responsive preferences. The following example (a simplified version of Example 3 in Sotomayor 1999) illustrates the difference between executability and individual stability.

Example 3 Consider the following many-to-many matching problem. Quotas are all two. Let \(F = \{f_1, f_2, f_3, f_4\}\) and \(W = \{w_1, w_2, w_3, w_4\}\) with responsive preferences
stated as

<table>
<thead>
<tr>
<th></th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>${w_1, w_3}$</td>
<td>${w_2, w_3}$</td>
<td>${w_1, w_2}$</td>
<td>${f_2, f_3}$</td>
<td>${f_1, f_3}$</td>
<td>${f_1, f_2}$</td>
<td>${f_1, f_2}$</td>
<td>${f_1, f_2}$</td>
<td>${f_1, f_2}$</td>
</tr>
<tr>
<td>${w_1, w_4}$</td>
<td>${w_2, w_4}$</td>
<td>${w_1}$</td>
<td>${f_2, f_4}$</td>
<td>${f_1, f_4}$</td>
<td>${f_1}$</td>
<td>${f_1}$</td>
<td>${f_1}$</td>
<td>${f_1}$</td>
</tr>
<tr>
<td>${w_1, w_2}$</td>
<td>${w_2, w_1}$</td>
<td>${w_2}$</td>
<td>${f_2, f_1}$</td>
<td>${f_1, f_2}$</td>
<td>${f_2}$</td>
<td>${f_2}$</td>
<td>${f_2}$</td>
<td>${f_2}$</td>
</tr>
<tr>
<td>${w_3, w_4}$</td>
<td>${w_3, w_4}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>${f_3, f_4}$</td>
<td>${f_3, f_4}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>${w_3, w_2}$</td>
<td>${w_3, w_1}$</td>
<td>\vdash</td>
<td>\vdash</td>
<td>${f_3, f_1}$</td>
<td>${f_3, f_2}$</td>
<td>\vdash</td>
<td>\vdash</td>
<td>\vdash</td>
</tr>
<tr>
<td>${w_4, w_2}$</td>
<td>${w_4, w_1}$</td>
<td>\vdash</td>
<td>\vdash</td>
<td>${f_4, f_1}$</td>
<td>${f_4, f_2}$</td>
<td>\vdash</td>
<td>\vdash</td>
<td>\vdash</td>
</tr>
<tr>
<td>${w_1}$</td>
<td>${w_2}$</td>
<td>\vdash</td>
<td>\vdash</td>
<td>${f_2}$</td>
<td>${f_1}$</td>
<td>${f_2}$</td>
<td>${f_1}$</td>
<td>${f_2}$</td>
</tr>
<tr>
<td>${w_3}$</td>
<td>${w_3}$</td>
<td>\vdash</td>
<td>\vdash</td>
<td>${f_3}$</td>
<td>${f_3}$</td>
<td>\vdash</td>
<td>\vdash</td>
<td>\vdash</td>
</tr>
<tr>
<td>${w_4}$</td>
<td>${w_4}$</td>
<td>\vdash</td>
<td>\vdash</td>
<td>${f_4}$</td>
<td>${f_4}$</td>
<td>\vdash</td>
<td>\vdash</td>
<td>\vdash</td>
</tr>
<tr>
<td>${w_2}$</td>
<td>${w_1}$</td>
<td>\vdash</td>
<td>\vdash</td>
<td>${f_1}$</td>
<td>${f_2}$</td>
<td>\vdash</td>
<td>\vdash</td>
<td>\vdash</td>
</tr>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\vdash</td>
<td>\vdash</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\vdash</td>
<td>\vdash</td>
<td>\vdash</td>
</tr>
<tr>
<td>\vdash</td>
<td>\vdash</td>
<td>\vdash</td>
<td>\vdash</td>
<td>\vdash</td>
<td>\vdash</td>
<td>\vdash</td>
<td>\vdash</td>
<td>\vdash</td>
</tr>
</tbody>
</table>

The unique pairwise-stable matching μ is described by bold characters in the above table. Now consider a group deviation (T, μ') from μ with $T = \{f_1, f_2, w_1, w_2\}$ and μ' fully matched up within T only (in rectangles in the above table). This is beneficial for each agent in T, and it blocks μ. Moreover, since all partners of deviators are individually stable and preferences are responsive, (T, μ') is an individually stable deviation from μ, in turn implying that there is no setwise-stable matching in this example.\(^{15}\) In contrast, μ' is not pairwise-stable with passive outsiders, since, say, agent f_1 follows the suggested deviation plan only partially. She is willing to establish partnerships with w_1, yet she would not be willing to establish her partnership with w_2: instead, she keeps her partnership with w_3. Thus, it can be shown that the unique pairwise-stable matching μ is also a credibly group-stable matching. \square

In the next section, we investigate credibly group-stable matchings under various preference restrictions.

\(^{15}\)Note that preferences in this example (and the one in Sotomayor 1999) do not satisfy strong substitutability; thus non-existence of a setwise-stable matching does not contradict Echenique and Oviedo’s (2003) equivalence result. For example, let $S = \{w_1, w_2\}$ and $T = \{w_3, w_4\}$. Although $S \succ_{f_1} T$ and $w_2 \in Ch_{f_1}(S \cup \{w_2\}) = \{w_1, w_2\}$, we have $w_2 \notin Ch_{f_1}(T \cup \{w_2\}) = \{w_3, w_4\}$.

14
3 The Results

3.1 Substitutable Preferences

The first result shows that credible group stability implies pairwise stability under substitutable preferences.

Proposition 1 Every credibly group-stable matching is pairwise-stable, when \(\succeq \) is substitutable.

Proof. We prove the contrapositive of the statement. Let \(\succeq \) be substitutable and \(\mu \) be a pairwise-unstable matching. There are two possibilities: (i) there exists \(i \in F \cup W \) with \(Ch_i(\mu(i)) \neq \mu(i) \), or (ii) there is a pair \((f, w) \in F \times W \) such that \(w \in Ch_f(\mu(f) \cup \{w\}) \) and \(f \in Ch_w(\mu(w) \cup \{f\}) \). We inspect these two cases separately:

Case (i): A deviation \((\{i\}, \mu') \) with \(\mu'(i) = Ch_i(\mu(i)) \subset \mu(i) \) is executable, since agent \(i \) has no incentive to recover any of the discontinued partnerships in \(\mu \). Hence, \(\mu \) is not credibly group-stable.

Case (ii): Since Case (i) does not hold, \(\mu \) is an individually stable matching. Let \(\mu'(f) = Ch_f(\mu(f) \cup \{w\}) \), \(\mu'(w) = Ch_w(\mu(w) \cup \{f\}) \), \(\mu'(w') = \mu(w') \setminus \{f\} \) for any worker \(w' \in W \setminus Ch_f(\mu(f) \cup \{w\}) \), and \(\mu'(f') = \mu(f') \setminus \{w\} \) for any firm \(f' \in F \setminus Ch_w(\mu(w) \cup \{f\}) \). Then group deviation \((\{f, w\}, \mu') \) from \(\mu \) is executable, since agents \(f \) and \(w \) have no incentive to recover any partnership that was discontinued in \(\mu \) or remain single. Hence, \(\mu \) is not credibly group-stable, completing the proof. \(\square \)

However, there may be a pairwise-stable matching that is not credibly group-stable even when one side has responsive preferences and the other side has substitutable preferences, as the following proposition shows.

Proposition 2 A pairwise-stable matching is not necessarily credibly group-stable, when \(\succeq_W \) (\(\succeq_F \)) is substitutable even if \(\succeq_F \) (\(\succeq_W \)) is responsive.

Proof. The following example proves this proposition. \(\square \)

Example 4 Consider the following 16-agent many-to-many matching problem. Let

\[
F = \{f_1, f_2, f_3, f_4, \bar{f}_1, \bar{f}_2, \bar{f}_3, \bar{f}_4\} \quad \text{and} \quad W = \{w_1, w_2, w_3, w_4, \bar{w}_1, \bar{w}_2, \bar{w}_3, \bar{w}_4\}.
\]

Each firm has responsive preferences described as follows: each firm without a bar has quota 3, and her preferences are lexicographic in the order of the ranking of individual
Workers have substitutable preferences. Their preferences are stated as follows:

<table>
<thead>
<tr>
<th></th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
<th>\bar{f}_1</th>
<th>\bar{f}_2</th>
<th>\bar{f}_3</th>
<th>\bar{f}_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>\bar{w}_2</td>
<td>\bar{w}_3</td>
<td>\bar{w}_4</td>
<td>\bar{w}_1</td>
<td>w_2</td>
<td>w_3</td>
<td>w_4</td>
<td></td>
</tr>
<tr>
<td>\bar{w}_2</td>
<td>\bar{w}_3</td>
<td>\bar{w}_4</td>
<td>\bar{w}_1</td>
<td>w_2</td>
<td>w_3</td>
<td>w_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\bar{w}_3</td>
<td>\bar{w}_4</td>
<td>\bar{w}_1</td>
<td>\bar{w}_2</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>\bar{w}_4</td>
<td>\bar{w}_1</td>
<td>\bar{w}_2</td>
<td>\bar{w}_3</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>w_1</td>
<td>w_2</td>
<td>w_3</td>
<td>w_4</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>w_2</td>
<td>w_3</td>
<td>w_4</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td></td>
</tr>
</tbody>
</table>

Workers have substitutable preferences. Their preferences are stated as follows:

\[
\{f_2, \bar{f}_2\} \succ_{w_1} \{f_2, f_1, \bar{f}_1\} \succ_{w_1} \{f_2, f_1\} \succ_{w_1} \{f_2\} \succ_{w_1} \emptyset \succ_{w_1} \ldots,
\]

\[
\{\bar{f}_2\} \succ_{w_1} \{f_1, \bar{f}_1\} \succ_{w_1} \{f_1\} \succ_{w_1} \emptyset \succ_{w_1} \ldots,
\]

\[
\{f_1, \bar{f}_1\} \succ_{w_2} \{f_1, f_2, \bar{f}_2\} \succ_{w_2} \{f_1, f_2\} \succ_{w_2} \{f_1, \bar{f}_2\} \succ_{w_2} \{f_1\} \succ_{w_2} \emptyset \succ_{w_2} \ldots,
\]

\[
\{\bar{f}_1\} \succ_{w_2} \{f_2, f_2\} \succ_{w_2} \{f_2\} \succ_{w_2} \emptyset \succ_{w_2} \ldots,
\]

\[
\{f_4, \bar{f}_4\} \succ_{w_3} \{f_4, f_3, \bar{f}_3\} \succ_{w_3} \{f_4, f_3\} \succ_{w_3} \{f_4, \bar{f}_3\} \succ_{w_3} \{f_4\} \succ_{w_3} \emptyset \succ_{w_3} \ldots,
\]

\[
\{f_3, f_3\} \succ_{w_4} \{f_3, f_4\} \succ_{w_4} \{f_3, \bar{f}_4\} \succ_{w_4} \{f_4\} \succ_{w_4} \emptyset \succ_{w_4} \ldots,
\]

\[
\{f_1\} \succ_{\bar{w}_1} \{f_2, f_3, f_4\} \succ_{\bar{w}_1} \{f_2, f_3\} \succ_{\bar{w}_1} \{f_2, f_4\} \succ_{\bar{w}_1} \{f_2\} \succ_{\bar{w}_1} \emptyset \succ_{\bar{w}_1} \ldots,
\]

\[
\{f_3, f_4\} \succ_{\bar{w}_1} \{f_3, \bar{f}_4\} \succ_{\bar{w}_1} \{f_4\} \succ_{\bar{w}_1} \emptyset \succ_{\bar{w}_1} \ldots,
\]

\[
\{f_2\} \succ_{\bar{w}_2} \{f_3, f_4, f_1\} \succ_{\bar{w}_2} \{f_3, f_4\} \succ_{\bar{w}_2} \{f_3, f_1\} \succ_{\bar{w}_2} \{f_3\} \succ_{\bar{w}_2} \emptyset \succ_{\bar{w}_2} \ldots,
\]

\[
\{f_4, f_1\} \succ_{\bar{w}_2} \{f_4\} \succ_{\bar{w}_2} \{f_1\} \succ_{\bar{w}_2} \emptyset \succ_{\bar{w}_2} \ldots,
\]

\[
\{f_3\} \succ_{\bar{w}_3} \{f_4, f_1, f_2\} \succ_{\bar{w}_3} \{f_4, f_1\} \succ_{\bar{w}_3} \{f_4, f_2\} \succ_{\bar{w}_3} \{f_4\} \succ_{\bar{w}_3} \emptyset \succ_{\bar{w}_3} \ldots,
\]

\[
\{f_1, f_2\} \succ_{\bar{w}_3} \{f_1\} \succ_{\bar{w}_3} \{f_2\} \succ_{\bar{w}_3} \emptyset \succ_{\bar{w}_3} \ldots,
\]

16
Given this preference profile, a matching \(\mu \) that matches each agent with the partners in bold characters in the above tables is a pairwise-stable matching. However, a matching \(\mu' \) that matches each agent with the partners in rectangles in the above tables is also a pairwise-stable matching. Matching \(\mu' \) Pareto-dominates \(\mu \) and \(\mu' \) is pairwise-stable in \(F \cup W \) together imply that group deviation \((F \cup W, \mu') \) from \(\mu \) is executable. \(\square \)

Note that in this example, the number of partners of an agent can differ in different pairwise-stable matchings. This is one of the properties that does not hold under substitutability though it does under responsiveness even in many-to-one matching problems.\(^{16}\)

3.2 Responsive and Categorywise-Responsive Preferences

In the last subsection, we observed that equivalence between pairwise stability and credible group stability cannot be obtained when the preference profile is substitutable. Example 4 showed that this result is true even if one side has a responsive preference profile. However, in the UK markets, matching mechanisms utilize students’ preference orderings over individual consultants in each category and consultants’ preference orderings over individual students. Thus the usage of these mechanisms implicitly assumes that students’ preference profile is categorywise-responsive, and that consultants’ preference profile is responsive. Thus, it appears to be important to investigate pairwise stability in this domain.\(^{17}\) Throughout this subsection, we assume that \(F \) has responsive preferences and \(W \) has categorywise-responsive preferences.

We introduce one more piece of notation. For any agent \(i \in F \cup W \), and any \(S \subseteq M_i \), let \(\beta_i(S) \in S \) be such that \(j \succeq_i \beta_i(S) \) for all \(j \in S \); i.e., \(\beta_i \) selects the least preferable element in the set of partners.

Using \(\beta_i \), it is easy to see that we can state the following lemma about pairwise-stable matchings and executable deviations in this domain.

\(^{16}\)Martinez, Masso, Neme, and Oviedo (2000) show that the set of single agents may not be the same in pairwise stable matchings in a college admissions problem (many-to-one matching problem) under substitutability, while Roth (1984a) shows it is the case under responsiveness (a.k.a. rural hospital theorem). This phenomenon of substitutable preferences seems to play an important role in our counterexample, too. See also Hatfield and Milgrom (2004) for an extensive discussion of many-to-one matching problems by using an integrating approach.

\(^{17}\)Echenique (2004) reports that substitutability allows exponentially more freedom in possible preference orderings than responsiveness and views this fact as a positive implication of the Gale-Shapley’s algorithm based on preferences over individual partners.
Lemma 1 When \succeq_F is responsive with quotas $(q_f)_{f \in F}$, and \succeq_W is categorywise-responsive with categories and quotas being $(K_w, (M^k_w, q^k_w)_{k \in K_w})_{w \in W}$, we have the following:

(1) A matching μ is **pairwise-stable** if and only if

(a) (respecting quotas)

(i) for any $f \in F$, $|\mu(f)| \leq q_f$, and

(ii) for any $w \in W$ and any $k \in K_w$, $|\mu(w) \cap M^k_w| \leq q^k_w$;

(b) (no blocking individual) for any $i \in T$, $\beta_i(\mu(i)) \succ_i \emptyset$; and

(c) (no blocking pair) for any pair $(f, w) \in F \times W$ with $f \in M^k_w \setminus \mu(w)$ for some $k \in K_w$,

(A) $\emptyset \succ_f w$, or $\beta_f(\mu(f)) \succ_f w$ with $|\mu(f)| = q_f$, or

(B) $\emptyset \succ_w f$, or $\beta_w(\mu(w) \cap M^k_w) \succ_w f$ with $|\mu(w) \cap M^k_w| = q^k_w$.

(2) For each matching μ, a group deviation (T, μ') from μ is **executable** if and only if

(a) (respecting quotas)

(i) for any $f \in F \cap T$, $|\mu'(f)| \leq q_f$, and

(ii) for any $w \in W \cap T$ and any $k \in K_w$, $|\mu'(w) \cap M^k_w| \leq q^k_w$;

(b) (no blocking individual among insiders possibly with passive outsiders)

(i) for any $i \in T$, $\beta_i(\mu'(i)) \succ_i \emptyset$,

(ii) for any $f \in F \cap T$, and any $w \in (\mu(f) \setminus (T \cup \mu'(f)))$, $\emptyset \succ_f w$, or $\beta_f(\mu'(f)) \succ_f w$ with $|\mu'(f)| = q_f$, and

(iii) for any $w \in W \cap T$, any $k \in K_w$, and any $f \in (\mu(w) \cap M^k_w) \setminus (T \cup \mu'(w))$, $\emptyset \succ_w f$, or $\beta_w(\mu'(w) \cap M^k_w) \succ_w f$ with $|\mu'(w) \cap M^k_w| = q^k_w$; and

(c) (no blocking pair among insiders) for any pair $(f, w) \in (F \cap T) \times (W \cap T)$ with $f \in (T \cap M^k_w) \setminus \mu'(w)$ for some $k \in K_w$,

(A) $\emptyset \succ_f w$, or $\beta_f(\mu'(f)) \succ_f w$ with $|\mu'(f)| = q_f$, or

(B) $\emptyset \succ_w f$, or $\beta_w(\mu'(w) \cap M^k_w) \succ_w f$ with $|\mu'(w) \cap M^k_w| = q^k_w$.

Since the proof of Lemma 1 is immediate from the definitions of pairwise stability, executability, responsiveness, and categorywise responsiveness, we skip it. The first main result of this paper is as follows:
Theorem 1 The set of pairwise-stable matchings is equivalent to the set of credibly group-stable matchings, when \succeq_F is responsive, and \succeq_W is categorywise-responsive.

One direction has been proved in Proposition 1 under substitutable preferences. To show the equivalence, we need to prove the other direction.

Lemma 2 Every pairwise-stable matching is credibly group-stable, when \succeq_F is responsive, and \succeq_W is categorywise-responsive.

Proof. Let \succeq_F be responsive with quotas $(q_f)_{f \in F}$, and \succeq_W is categorywise-responsive with categories and quotas given by $(K_w, (M^k_w, q^k_w))_{w \in W}$. We prove this lemma by contradiction. Suppose that μ is a pairwise-stable matching and that (T, μ') is an executable group deviation from μ. This supposition will be made throughout the proof.

First, we investigate the properties of newly created partnerships. Note that for any $f \in F$ and $w \in W$ with $f \in (\mu'(w) \cap M^k_w) \setminus \mu(w)$ for some $k \in K_w$ (a new partner), we have $f, w \in T$, since μ' is obtainable from μ. Moreover, since (T, μ') is executable, for these f and w, we have $w \succ_f T$ and $f \succ_w T$ by Condition 2-b-i of Lemma 1. We first prove the following claims.

Claim 1: For any $w \in W$, $k \in K_w$, and $f \in (\mu'(w) \cap M^k_w) \setminus \mu(w)$, either $\beta_f(\mu(f)) \succ_f w$ or $\beta_w(\mu(w) \cap M^k_w) \succ_w w$.

Proof of Claim 1. We prove the claim by contradiction. Suppose there are $w \in W$ and $f \in (\mu'(w) \cap M^k_w) \setminus \mu(w)$ for some $k \in K_w$ such that $w \succ_f \beta_f(\mu(f))$ and $f \succ_w \beta_w(\mu(w) \cap M^k_w)$. Since (T, μ') is an executable deviation from μ, by Condition 2-b-i of Lemma 1, we have $w \succ_f T$ and $f \succ_w T$. By Condition 1-c of Lemma 1 the last two statements imply that μ is pairwise-unstable, that is because (f, w) blocks μ, contradicting that μ is pairwise-stable. Therefore, such agents f and w do not exist.

Claim 2: For any $w \in W$, $k \in K_w$, and $f \in (\mu'(w) \cap M^k_w) \setminus \mu(w)$, either $\beta_f(\mu(f)) \succ_f w$ with $|\mu(f)| = q_f$ or $\beta_w(\mu(w) \cap M^k_w) \succ_w w$ with $|\mu(w) \cap M^k_w| = q^k_w$.

Proof of Claim 2. Let $w \in W$, $k \in K_w$, and $f \in (\mu'(w) \cap M^k_w) \setminus \mu(w)$. Since (T, μ') is an executable deviation from μ, by Condition 2-b-i of Lemma 1 we have $w \succ_f T$ and $f \succ_w T$. By Claim 1, either $\beta_f(\mu(f)) \succ_f w$ or $\beta_w(\mu(w) \cap M^k_w) \succ_w f$. First consider $\beta_f(\mu(f)) \succ_f w$. There are two cases: $|\mu(f)| = q_f$ or $|\mu(f)| < q_f$.

Case 1. $|\mu(f)| = q_f$: Then the proof of Claim 2 is complete.

Case 2. $|\mu(f)| < q_f$: Since μ is pairwise-stable, there are no blocking pairs. In particular, (f, w) cannot block μ. Since $|\mu(f)| < q_f$, $w \succ_f T$, and $f \succ_w T$, we have $\beta_w(\mu(w) \cap M^k_w) \succ_w f$ and $|\mu(w) \cap M^k_w| = q^k_w$ by Condition 1-c of Lemma 1.
The case with $\beta_w (\mu(w) \cap M^k_w) \succ_w f$ can be dealt with in a similar manner.

Claim 2 allows us to introduce a new concept. For any worker w, any of her categories k and any firm $f \in (M^k_w \cap \mu'(w)) \setminus \mu(w)$, we say that firm f is pointed by worker w if $\beta_f(\mu(f)) \succ_f w$ and $|\mu(f)| = q_f$; and that worker w is pointed by firm f if $\beta_w(\mu(w) \cap M^k_w) \succ_w f$ and $|\mu(w) \cap M^k_w| = q^k_w$. Claim 2 says that in any newly created partnership, there is always an agent who is pointed by the other. Let P_F be the set of pointed firms, i.e.

$$P_F = \{ f \in F : \exists w \in \mu'(f) \setminus \mu(f) \text{ such that } \beta_f(\mu(f)) \succ_f w \text{ and } |\mu(f)| = q_f \}.$$

For any $f \in P_F$, since there exists some $w \in \mu'(f) \setminus \mu(f)$, pair (f, w) is a newly created partnership, and $f, w \in T$ must hold.

Claim 3: If a firm f is pointed by $r \geq 1$ workers, then $|\mu(f) \setminus \mu'(f)| > r$.

Proof of Claim 3. Let firm f be pointed by r workers $w_1, w_2, ..., w_r$. This implies that $\beta_f(\mu(f)) \succ_f w_h$ for all $h \in \{1, ..., r\}$ and firm f’s quota q_f is binding under μ. The latter statement implies that firm f needs to discontinue partnerships with at least r incumbent partners (each of whom is more preferable than $w_1, w_2, ..., w_r$) in order to have new partnerships with $w_1, w_2, ..., w_r$. Since $\mu'(f) \succ_f \mu(f)$ and \succeq_f is responsive with quota q_f, there should be at least one more new partner $w' \in \mu'(f) \setminus \mu(f)$ such that $w' \succ_f \beta_f(\mu(f))$ for firm f to be compensated. Hence, firm f establishes at least $r + 1$ new partnerships. Since firm f’s quota is binding under μ, firm f must discontinue strictly more than r old partnerships to create room for these new partners under μ'.

This claim simply says that if a firm is pointed by r workers, then she needs to discontinue at least one additional partnership to improve her situation.

Claim 4: Let $f \in P_F$ and $w \in \mu(f) \setminus \mu'(f)$ be such that $f \in M^k_w$ for some $k \in K_w$ (i.e., partnership (f, w) is discontinued). Then (i) $w \in T$, (ii) $|\mu'(w) \cap M^k_w| = q^k_w$, and (iii) $\beta_w(\mu'(w) \cap M^k_w) \succ_w f$.

Proof of Claim 4. Let firm $f \in P_F$ be pointed by worker $w' \in T$ and let worker $w \in \mu(f) \setminus \mu'(f)$ be such that $f \in M^k_w$ for some $k \in K_w$, that is, partnership (f, w) is discontinued by the group deviation (T, μ'). Since f is pointed by w', $\beta_f(\mu(f)) \succ_f w'$. Since $w' \in \mu'(f)$ and $w \in \mu(f) \setminus \mu'(f)$, we have $w \succ_f \beta_f(\mu'(f))$. We prove each part separately:

(i) Suppose that $w \notin T$. This implies that $w \in \mu(f) \setminus (T \cup \mu'(f))$. This together with $w \succ_f \beta_f(\mu'(f))$ contradicts executability of (T, μ') by Condition 2-b-ii of Lemma 1. Therefore $w \in T$.

20
(ii) Suppose that $|\mu'(w) \cap M^k_w| < q^k_w$. Since μ is pairwise-stable, we have $f \succ_w \emptyset$ by Condition 1-b-ii of Lemma 1. Since $f, w \in T$ (see (i)), this together with $w \succ_f \beta_f (\mu'(f))$ contradicts the executability of (T, μ') by Condition 2-c of Lemma 1. Therefore $|\mu'(w) \cap M^k_w| = q^k_w$.

(iii) Suppose that $f \succ_w \beta_w (\mu'(w) \cap M^k_w)$. Since $f, w \in T$ (see (i)), this together with $w \succ_f \beta_f (\mu'(f))$ contradicts the executability of (T, μ') by Condition 2-c of Lemma 1. Therefore $\beta_w (\mu'(w) \cap M^k_w) \succeq_w f$. Thus, $\mu'(w) \cap M^k_w \cap P_F \neq \emptyset$. By Claim 4 (i), it immediately follows that $D_W \subseteq T$.

Claim 5: Let $w \in D_W$. If w has discontinued $r \geq 1$ partnerships with firms in P_F in category $k \in K_w$: i.e.

$$\left| (\mu(w) \cap M^k_w \cap P_F) \setminus \mu'(w) \right| = r,$$

then there are at least r firms in P_F who are pointed by worker w in category k.

Proof of Claim 5. Let $w \in D_W$ be such that she has discontinued $r \geq 1$ partnerships with firms in P_F in category $k \in K_w$. Pick any $f' \in (\mu'(w) \cap M^k_w \setminus \mu(w))$. We will show that $f' \in P_F$. Let $f \in (\mu(w) \cap M^k_w \cap P_F) \setminus \mu'(w)$, that is, firm f is one of the firms in P_F that worker w discontinued partnerships in category k. By Claim 4 (iii), we have $\beta_w (\mu'(w) \cap M^k_w) \succeq_w f$. Since $f' \in \mu'(w) \cap M^k_w$ and $f \in \mu(w) \cap M^k_w$, it follows that $f' \succeq_w \beta_w (\mu'(w) \cap M^k_w)$. By Claim 2, we have either (i) $\beta_{f'} (\mu(f')) \succ_{f'} w$ with $|\mu(f')| = q_{f'}$, or (ii) $\beta_w (\mu(w) \cap M^k_w) \succeq_w f'$ with $|\mu(w) \cap M^k_w| = q^k_w$. Obviously, (ii) does not hold in this case, and (i) follows. Thus, f' is pointed by w, and $f' \in P_F$. Since f' is picked arbitrarily in $(\mu'(w) \cap M^k_w \setminus \mu(w))$, every firm in $(\mu'(w) \cap M^k_w \setminus \mu(w))$ is pointed by w. By Claim 4 (ii), we have $|\mu'(w) \cap M^k_w| = q^k_w$. Since w has discontinued r partnerships with firms in $M^k_w \cap P_F$, she must form at least r partnerships as well. Thus, there must be at least r firms in $M^k_w \cap P_F$ that are pointed by w.

Claim 6: The set P_F is non-empty.

Proof of Claim 6. Since (T, μ') is a group deviation from μ, and μ is pairwise-stable (and thus cannot be blocked by an individual), $T \cap W \neq \emptyset$, and for any $w \in W \cap T$, $\mu'(w) \setminus \mu(w) \neq \emptyset$. Suppose that $P_F = \emptyset$. Then, for any $w \in W \cap T$, and any $f \in \mu'(w) \setminus \mu(w)$, w is pointed by f in some category $k \in K_w$ by Claim 2, and thus $\beta_k (\mu(w) \cap M^k_w) \succeq_w f$. This implies $\mu(w) \succeq_w \mu'(w)$ by categorywise responsiveness of \succeq_w, contradicting (T, μ') is a group deviation from μ. Thus, P_F is non-empty.
We now are ready to complete the proof of the lemma. Set P_F is non-empty by Claim 6. Let $r \geq 1$ be the number of partnerships that have been discontinued by firms in P_F. By Claim 4, these discontinued partnerships are with workers in D_W. By Claim 5, workers in D_W who discontinued r partnerships with firms in P_F would establish at least r new partnerships with firms in P_F by pointing them. By Claim 3, those pointed firms in P_F should have discontinued at least $r + 1$ partnerships. This is a contradiction. Therefore (T, μ') cannot be executable. □

It is important to have no category in the preferences of one side (here F). If both sides have categorywise-responsive preference profiles, the equivalence between pairwise stability and credible group stability does not hold (since a symmetric argument of Claim 3 is not valid for set W, which has a categorywise-responsive preference profile: agent w’s loss in a category may be compensated by a gain in another category). Indeed, the following example shows that our result is no longer true when both sides have categorywise-responsive preferences.18

Example 5 Consider a many-to-many matching problem with $F = \{f_1, f_2, f_3, f_4\}$ and $W = \{w_1, w_2, w_3, w_4\}$. There are two categories for each agent, and the partner set in each category is given as odd-indexed partners for the first category and even-indexed partners for the second category. Each agent has a unit quota for each category. The preferences are categorywise-responsive and stated as follows:

<table>
<thead>
<tr>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>${w_2, w_3}$</td>
<td>${w_1, w_4}$</td>
<td>${w_1, w_3}$</td>
<td>${w_2, w_3}$</td>
<td>${f_1, f_4}$</td>
<td>${f_3, f_2}$</td>
<td>${f_3, f_2}$</td>
<td>${f_1, f_4}$</td>
</tr>
<tr>
<td>${w_1, w_2}$</td>
<td>${w_3, w_4}$</td>
<td>${w_4, w_1}$</td>
<td>${w_3, w_4}$</td>
<td>${f_3, f_4}$</td>
<td>${f_3, f_4}$</td>
<td>${f_1, f_2}$</td>
<td>${f_3, f_4}$</td>
</tr>
<tr>
<td>${w_1, w_4}$</td>
<td>${w_3, w_2}$</td>
<td>${w_3, w_2}$</td>
<td>${w_1, w_4}$</td>
<td>${f_3, f_2}$</td>
<td>${f_1, f_4}$</td>
<td>${f_1, f_4}$</td>
<td>${f_3, f_2}$</td>
</tr>
<tr>
<td>${w_3}$</td>
<td>${w_4}$</td>
<td>${w_1}$</td>
<td>${w_2}$</td>
<td>${f_4}$</td>
<td>${f_3}$</td>
<td>${f_2}$</td>
<td>${f_1}$</td>
</tr>
<tr>
<td>${w_1}$</td>
<td>${w_2}$</td>
<td>${w_3}$</td>
<td>${w_4}$</td>
<td>${f_1}$</td>
<td>${f_2}$</td>
<td>${f_3}$</td>
<td>${f_4}$</td>
</tr>
<tr>
<td>${w_4}$</td>
<td>${w_3}$</td>
<td>${w_2}$</td>
<td>${w_1}$</td>
<td>${f_3}$</td>
<td>${f_4}$</td>
<td>${f_4}$</td>
<td>${f_2}$</td>
</tr>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

Let μ be a matching described by bold characters, and let μ' be a matching described by rectangles. Both of them are pairwise-stable matchings. Moreover, $\mu'(i) \succ_i \mu(i)$ for all $i \in F \cup W$. Therefore, $(F \cup W, \mu')$ is an executable group deviation from μ. □

18This insightful example has been suggested by a referee.
A slightly modified version of the above example shows that there may not exist a credibly group-stable matching when both sides have categorywise-responsive preferences. (An example that proves the following proposition is given in the appendix.)

Proposition 3 No credibly group-stable matching may exist, when both sides have categorywise-responsive preferences.

4 Strategic-Form Games

We can rewrite our matching problem as a strategic-form game in which each agent is a player, each player simultaneously announces a subset of players she wants to be matched with, and a match is made if and only if each of a pair of players announces each other’s name. Here, we show that this game is useful to clarify the relationships among the notions of stable matchings in matching problems. A **strategic-form game** is a list $G(F \cup W) = (F \cup W, (S_i, u_i)_{i \in F \cup W})$, where for any player $i \in F \cup W$, her strategy set is $S_i = 2^{M_i}$, and her payoff function is $u_i : \Pi_{j \in F \cup W} S_j \rightarrow \mathbb{R}$ such that $u_i(s) \geq u_i(s')$ if and only if $m_i(s) \succeq_i m_i(s')$, where $m_i(s) = \{ j \in M_i : j \in s_i \text{ and } i \in s_j \}$ is the list of the sets of players who are matched with i in each category under a matching resulting from strategy profile $s \in \Pi_{j \in F \cup W} S_j$. Let $m = (m_i)_{i \in F \cup W}$ be the vector function such that for any $s \in \Pi_{j \in F \cup W} S_j$, $m(s)$ is the matching resulting from s. For any $I \subseteq F \cup W$, any $s \in \Pi_{j \in F \cup W} S_j$ and any $s'_I \in \Pi_{j \in I} S_j$, the pair (I, s'_I) is a **strategic coalitional deviation from** s if $u_i(s'_I, s_{-I}) > u_i(s)$ for every $i \in I$. A strategy profile $s^* \in \Pi_{j \in F \cup W} S_j$ is a **strong Nash equilibrium** of $G(F \cup W)$ if there exists no strategic coalitional deviation from s^* (Aumann 1959). In fact, it is easy to see that the set of matchings generated by strong Nash equilibria of the strategic-form game is equivalent to the set of group-stable matchings. Thus, if we apply the notion of a strong Nash equilibrium to a many-to-one (and, of course, to a one-to-one) matching game, the set of the matchings generated from strong Nash equilibria and the set of pairwise-stable matchings are equivalent without invoking the *weak* core (by the reason described earlier). However, in a many-to-many matching game, a strong Nash equilibrium may not exist (recall Example 1 and consider the strategic-form game defined for this many-to-many matching problem).

Next we define a weaker solution concept based on credibility of strategic coalitional deviations: coalition-proof Nash equilibrium (Bernheim, Peleg, and Whinston 1987).\(^{19}\)

\(^{19}\)One of the results in Kara and Sönmez (1997) shows that in a two-sided many-to-one matching problem, the same game form implements pairwise-stable correspondence in strong Nash equilibrium.\(^{20}\)

For $I \subseteq F \cup W$, consider a **reduced game** $G(I, s_{-I})$ that is a strategic-form game with players in I and is created from $G(I)$ by setting each player $j \in (F \cup W) \setminus I$ to be a passive player who plays a given $s_j \in S_j$ no matter what happens. A **coalition-proof Nash equilibrium (CPNE)** is recursively defined as follows:

(a) For any $i \in F \cup W$ and any $s_{-i} \in \Pi_{j \in (F \cup W) \setminus \{i\}} S_j$, strategy $s_i^* \in S_i$ is a CPNE of reduced game $G(\{i\}, s_{-i})$ if there is no $s_i' \in S_i$ with $u_i(s_i', s_{-i}) > u_i(s_i^*, s_{-i})$.

(b) Pick any positive integer $r < |F \cup W|$. Let all CPNEs of a reduced game $G(J, s_{-J})$ be defined for any $J \subseteq F \cup W$ with $|J| \leq r$ and any $s_{-J} \in \Pi_{i \in (F \cup W) \setminus J} S_i$. Then,

(i) for any $I \subseteq F \cup W$ with $|I| = r + 1$, s_i^* is self-enforcing in reduced game $G(I, s_{-I})$ if for every $J \subseteq I$ we have s_j^* is a CPNE of reduced game $G(J, (s_{-I}, s_i^*|_{-I}))$ of $G(I, s_{-I})$, and

(ii) for any $I \subseteq F \cup W$ with $|I| = r + 1$, s_i^* is a CPNE of reduced game $G(I, s_{-I})$ if s_i^* is self-enforcing in reduced game $G(I, s_{-I})$, and there is no other self-enforcing s_i' such that $u_i(s_i', s_{-I}) > u_i(s_i^*, s_{-I})$ for every $i \in I$.

For any $I \subseteq F \cup W$ and any strategy profile s, let $CPNE(G(I, s_{-I}))$ denote the set of CPNE strategy profiles on I for the game $G(I, s_{-I})$. For any strategy profile s, a strategic coalitional deviation (I, s_I') from s is **credible** if $s_I' \in CPNE(G(I, s_{-I}))$. A CPNE is a strategy profile that is immune to any credible strategic coalitional deviation.

The second main result of the paper is the following:

Theorem 2 The set of pairwise-stable matchings, the set of credibly group-stable matchings, and the set of matchings generated from coalition proof Nash equilibria of the strategic-form game $G(F \cup W)$ are all equivalent, when \succeq_F is responsive, and \succeq_W is categorywise-responsive.

We know that pairwise stability is equivalent to credible group stability if \succeq_F is responsive and \succeq_W is categorywise-responsive (Theorem 1). Thus, we need to show only that the resulting matching of a CPNE is pairwise-stable (proved below in Lemma 3), and that a credibly group-stable matching is the outcome of a CPNE (proved below in Lemma 4). Although these statements will be proved under substitutability, the equivalence between pairwise stability and credible group stability requires the stronger preference restriction of Theorem 1.21 We start with Lemma 3. Recall that

\[21\] Under substitutability, Lemmata 3 and 4 show that the set of credible group-stable matchings \subseteq the set of matchings generated from CPNEs \subseteq the set of pairwise-stable matchings.
Lemma 3 If \(s^* \in CPNE(G(F \cup W)) \) then \(m(s^*) \), the matching generated from \(s^* \), is a pairwise-stable matching, when \(\succeq \) is substitutable.

Proof. Let \(s^* \in CPNE(G(F \cup W)) \). Suppose that matching \(m(s^*) \) is not pairwise-stable. Then, either (i) there is \(i \in F \cup W \) such that \(Ch_i(m_i(s^*)) \neq m_i(s^*) \) (matched with an individually unstable agent), or (ii) there is a pair \((f, w) \in F \times W \) such that \(w \in Ch_f(m_f(s^*) \cup \{w\}) \) and \(f \in Ch_w(m_w(s^*) \cup \{f\}) \) (pair \((f, w) \) blocks \(m(s^*) \)).

Suppose that case (i) is true. This means that there is a player \(i \) who is willing to discontinue some of the partnerships under \(m(s^*) \). She can do that in \(G(F \cup W) \) by simply not announcing such partners. Considering \(G(\{i\}, s^*_{-\{i\}}) \), we can easily see that \(s^*_i \) is not a CPNE of the reduced game. This is a contradiction. Thus, suppose that case (ii) is true, and there is a pair \((f, w) \in F \times W \) that blocks \(m(s^*) \). Consider a strategic coalitional deviation by \(\{f, w\} \) with \((s'_f, s'_w)\), where \(s'_f \) and \(s'_w \) are such that \(s'_f = Ch_f(m_f(s^*) \cup \{w\}) \) and \(s'_w = Ch_w(m_w(s^*) \cup \{f\}) \). This deviation is obviously beneficial for both agents \(f \) and \(w \), since \(m_i(s'_f, s'_w, s^*_{-\{f,w\}}) = Ch_i(m_i(s^*) \cup \{j\}) \geq_i m_i(s^*) \) for each \(i \in \{f, w\} \) and \(j \in \{f, w\} \setminus \{i\} \) (pair \((f, w) \) blocks \(m(s^*) \)). Since \(s^* \) is a Nash equilibrium (a CPNE is a Nash equilibrium as well), for any \(i \in F \cup W \) and any \(\tilde{s}_i \in S_i \), we have \(m_i(s^*) \succeq_i m_i(\tilde{s}_i, s^*_{-i}) \) implying together with \(m_i(s'_f, s'_w, s^*_{-\{f,w\}}) \succeq_i m_i(\tilde{s}_i, s^*_{-i}) \) that for any \(\tilde{s}_i \in S_i \), we have \(m_i(s'_f, s'_w, s^*_{-\{f,w\}}) \succeq_i m_i(\tilde{s}_i, s^*_{-i}) \). Let \(\{i, j\} = \{f, w\} \). Since \(m_i(\tilde{s}_f, \tilde{s}_w, s^*_{-\{f,w\}}) \subseteq m_i(s^*) \cup \{j\} \) for any \((\tilde{s}_f, \tilde{s}_w) \in S_f \times S_w \), we have \(m_i(s'_f, s'_w, s^*_{-\{f,w\}}) = Ch_i(m_i(s^*) \cup \{j\}) \geq_i m_i(\tilde{s}_f, \tilde{s}_w, s^*_{-\{f,w\}}) \). The last two statements imply that agents \(f \) and \(w \) cannot achieve better matches than their partners under \(m(s'_f, s'_w, s^*_{-\{f,w\}}) \) by changing their strategies together or alone against \(s^*_{-\{f,w\}} \). Hence \(((f, w), (s'_f, s'_w)) \) is a credible strategic coalitional deviation from \(s^* \), contradicting that \(s^* \) is a CPNE and completing the proof of the lemma.

Lemma 4 For every credibly group-stable matching \(\mu \), there exists \(s \in CPNE(G(F \cup W)) \) such that \(\mu = m(s) \), when \(\succeq \) is substitutable.

Proof. Recall that a CPNE is immune to credible strategic coalitional deviations in the game and a credibly group-stable matching is immune to executable group deviations in the problem. Hence, if for any strategy profile \(s \) and any credible strategic coalitional deviation \((T, s'_f)\) from \(s \) in game \(G(F \cup W) \), there exists an executable group deviation from matching \(m(s) \) in the many-to-many matching problem, then the proof of the lemma will be complete. We will prove this as follows:
Let s be a strategy profile and (T, s'_T) be a credible strategic coalitional deviation from s. We denote the resulting strategy profile by $s' = (s'_T, s_{-T})$. Let μ be a matching generated from s, i.e. $\mu = m(s)$, and let μ' be the one generated from s', i.e. $\mu' = m(s')$. Note that $s'_j = s_j$ for any $j \in (F \cup W) \setminus T$. We will show that (T, μ') is an executable group deviation from μ. More specifically, we will prove that (i) for any $i \in T$, $Ch_i(\mu'(i) \cup (\mu(i) \setminus T)) \succ_i \mu'(i)$, and (ii) for any $i, j \in T$ with $j \in M_i \setminus \mu'(i)$, $j \in Ch_i(\mu'(i) \cup (\mu(i) \setminus T) \cup \{j\})$ implies $i \notin Ch_j(\mu'(j) \cup (\mu(j) \setminus T) \cup \{i\})$.

Condition (i): Suppose, to the contrary, that there exists an agent $i \in T$ with $Ch_i(\mu'(i) \cup (\mu(i) \setminus T)) \succ_i \mu'(i)$. Then profile s'_T is not immune to agent i’s credible strategic deviation $s''_i = Ch_i(\mu'(i) \cup (\mu(i) \setminus T))$, since $u_i(s''_i, s'_{F \cup W \setminus \{i\}}) > u_i(s')$, contradicting $s'_T \in CPNE(G(T, s_{-T}))$.

Condition (ii): Suppose, to the contrary, that for some firm $f \in T \cap F$ and worker $w \in T \cap W$ with $w \notin \mu'(f)$, we have $w \in Ch_f(\mu'(f) \cup (\mu(f) \setminus T) \cup \{w\})$ and $f \in Ch_w(\mu'(w) \cup (\mu(w) \setminus T) \cup \{f\})$. This implies that for any $i \in \{f, w\}$ and any $j \in \{f, w\} \setminus \{i\}$, we have $Ch_i(\mu'(i) \cup (\mu(i) \setminus T) \cup \{j\}) \succ_i \mu'(i)$. Coalition $\{f, w\}$ can deviate from s' by setting $s''_{i,f} = Ch_i(\mu'(i) \cup (\mu(i) \setminus T) \cup \{j\})$ for each $i \in \{f, w\}$ and $j \in \{f, w\} \setminus \{i\}$, since $m_i(s''_{i,f}, s''_{-\{f,w\}}) = Ch_i(\mu'(i) \cup (\mu(i) \setminus T) \cup \{j\}) \succ_i \mu'(i) = m_i(s')$. Since f and w have already attained the highest possible payoffs by choosing $(s''_{i,f}, s''_{w})$ against $s'_{-\{f,w\}}$, neither f nor w nor jointly $\{f, w\}$ can credibly deviate from $(s''_{i,f}, s''_{w})$, in turn implying that the strategic coalitional deviation $\{\{f, w\}, (s''_{i,f}, s''_{w})\}$ from s'_T is credible. This contradicts $s'_T \in CPNE(G(T, s_{-T}))$, completing the proof of the lemma.

5 Conclusion

This paper establishes a theoretical foundation of pairwise stability in many-to-many matching problems when group deviations are allowed. We define credible group stability by restricting group deviations based on their credibility and prove the equivalence between pairwise stability and credible group stability when one side has responsive preferences while the other side has categorywise-responsive preferences. This domain fits well with the UK hospital-intern markets. Moreover, in the same domain, we show the equivalence between pairwise-stable matchings and the set of matchings generated by coalition-proof Nash equilibria of appropriately defined noncooperative matching games.

We also investigate what happens if the preference domain is expanded. We show by Examples 4 and 5 that if the domain is expanded then the equivalence no longer holds, since some pairwise-stable matchings can be Pareto-ordered.

We conclude noting that our Theorems 1 and 2 hold under responsive preferences for
general non-bipartite multi-partner matching problems. The proof is almost identical to the ones of Theorems 1 and 2, so it is omitted. A general multi-partner matching problem is a list \((N, (M_i, \succeq_i)_{i \in N})\) such that \(N\) is a finite set of agents, and for each \(i \in N\), \(M_i \subseteq N \setminus \{i\}\) is the set of feasible partners for \(i\), and \(\succeq_i\) is a preference ordering over \(2^{M_i}\).

Theorem 3 In general multi-partner matching problems, the set of pairwise-stable matchings, the set of credibly group-stable matchings, and the set of matchings generated from coalition-proof Nash equilibria of the strategic-form game \(G(N)\) are all equivalent, when \(\succeq_N\) is responsive.

Appendix

Example 6 Consider a many-to-many matching problem with \(F = \{f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8\}\) and \(W = \{w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8\}\). There are two categories for each agent, and the partner set in each category is given as odd-indexed partners for the first category and even-indexed partners for the second category (the latter four agents in each category have only one acceptable agent each). Each agent has unit quota for each category. The preferences are categorywise-responsive and stated as follows:

<table>
<thead>
<tr>
<th></th>
<th>(f_1)</th>
<th>(f_2)</th>
<th>(f_3)</th>
<th>(f_4)</th>
<th>(f_5)</th>
<th>(f_6)</th>
<th>(f_7)</th>
<th>(f_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{w_3, w_2}</td>
<td>{w_1, w_4}</td>
<td>{w_1, w_4}</td>
<td>{w_3, w_2}</td>
<td>{w_1}</td>
<td>{w_2}</td>
<td>{w_3}</td>
<td>{w_4}</td>
<td>{w_2}</td>
</tr>
<tr>
<td>{w_3, w_6}</td>
<td>{w_5, w_4}</td>
<td>{w_1, w_8}</td>
<td>{w_7, w_2}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{w_3, w_4}</td>
<td>{w_3, w_4}</td>
<td>{w_1, w_2}</td>
<td>{w_1, w_2}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{w_1, w_2}</td>
<td>{w_1, w_2}</td>
<td>{w_3, w_4}</td>
<td>{w_3, w_4}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{w_1, w_6}</td>
<td>{w_5, w_2}</td>
<td>{w_3, w_8}</td>
<td>{w_7, w_4}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{w_1, w_4}</td>
<td>{w_3, w_2}</td>
<td>{w_3, w_2}</td>
<td>{w_1, w_4}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{w_3}</td>
<td>{w_4}</td>
<td>{w_1}</td>
<td>{w_2}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{w_1}</td>
<td>{w_2}</td>
<td>{w_3}</td>
<td>{w_4}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{w_2}</td>
<td>{w_1}</td>
<td>{w_4}</td>
<td>{w_3}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{w_6}</td>
<td>{w_5}</td>
<td>{w_8}</td>
<td>{w_7}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{w_4}</td>
<td>{w_3}</td>
<td>{w_2}</td>
<td>{w_1}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

\(^{22}\)Our results do not apply in Sönmez's (1999) generalized matching problems (thus, neither in Alkan's (1988) \(k\)-sided matching problems with \(k \geq 3\), nor in housing market problems). Our theorem requires that a partnership can be formed by a bilateral agreement only.
<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>w_5</th>
<th>w_6</th>
<th>w_7</th>
<th>w_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>${f_1, f_4}$</td>
<td>${f_3, f_2}$</td>
<td>${f_3, f_2}$</td>
<td>${f_1, f_4}$</td>
<td>${f_2}$</td>
<td>${f_1}$</td>
<td>${f_4}$</td>
<td>${f_3}$</td>
</tr>
<tr>
<td>2</td>
<td>${f_5, f_4}$</td>
<td>${f_3, f_6}$</td>
<td>${f_7, f_2}$</td>
<td>${f_1, f_8}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>3</td>
<td>${f_4}$</td>
<td>${f_3, f_4}$</td>
<td>${f_3, f_2}$</td>
<td>${f_1, f_2}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>4</td>
<td>${f_1, f_2}$</td>
<td>${f_3, f_4}$</td>
</tr>
<tr>
<td>5</td>
<td>${f_5, f_2}$</td>
<td>${f_1, f_6}$</td>
<td>${f_7, f_4}$</td>
<td>${f_3, f_8}$</td>
<td>${f_3, f_8}$</td>
<td>${f_3, f_8}$</td>
<td>${f_3, f_8}$</td>
<td>${f_3, f_8}$</td>
</tr>
<tr>
<td>6</td>
<td>${f_3, f_2}$</td>
<td>${f_1, f_4}$</td>
<td>${f_3, f_4}$</td>
<td>${f_3, f_4}$</td>
<td>${f_3, f_4}$</td>
<td>${f_3, f_4}$</td>
<td>${f_3, f_4}$</td>
<td>${f_3, f_4}$</td>
</tr>
<tr>
<td>7</td>
<td>${f_4}$</td>
<td>${f_3}$</td>
<td>${f_2}$</td>
<td>${f_1}$</td>
<td>${f_1}$</td>
<td>${f_1}$</td>
<td>${f_1}$</td>
<td>${f_1}$</td>
</tr>
<tr>
<td>8</td>
<td>${f_2}$</td>
<td>${f_1}$</td>
<td>${f_4}$</td>
<td>${f_3}$</td>
<td>${f_3}$</td>
<td>${f_3}$</td>
<td>${f_3}$</td>
<td>${f_3}$</td>
</tr>
<tr>
<td>9</td>
<td>${f_1}$</td>
<td>${f_2}$</td>
<td>${f_4}$</td>
<td>${f_3}$</td>
<td>${f_3}$</td>
<td>${f_3}$</td>
<td>${f_3}$</td>
<td>${f_3}$</td>
</tr>
<tr>
<td>10</td>
<td>${f_5}$</td>
<td>${f_6}$</td>
<td>${f_7}$</td>
<td>${f_8}$</td>
<td>${f_8}$</td>
<td>${f_8}$</td>
<td>${f_8}$</td>
<td>${f_8}$</td>
</tr>
<tr>
<td>11</td>
<td>${f_3}$</td>
<td>${f_4}$</td>
<td>${f_4}$</td>
<td>${f_4}$</td>
<td>${f_4}$</td>
<td>${f_4}$</td>
<td>${f_4}$</td>
<td>${f_4}$</td>
</tr>
<tr>
<td>12</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

For example, for agent f_1, in the even category, w_2 is the best, w_6 is the second best, and w_4 is the worst partners respectively. Unlike Example 5, pairwise-stable matching is unique (the F-optimal and the W-optimal matchings are identical): a pairwise-stable matching μ is described by bold characters (the latter four agents in each category is unmatched). Now let μ' be a matching described by rectangles. Note that μ' is not pairwise-stable, since w_6 and f_1 can deviate. However, μ' is pairwise-stable within $T = \{f_1, f_2, f_3, f_4, w_1, w_2, w_3, w_4\}$, and $\mu'(i) \succ_i \mu(i)$ for all $i \in T$. Therefore (T, μ') is an executable group deviation from μ, and there is no credibly group-stable matching. □

References

SUST 1.2002 K. TANO, M.D. FAMINOW, M. KAMUANGA and B. SWALLOW: Using Conjoint Analysis to Estimate Farmers’ Preferences for Cattle Traits in West Africa

ETA 2.2002 Efrem CASTELNUOVO and Paolo SURICO: What Does Monetary Policy Reveal about Central Bank’s Preferences?

CLIM 4.2002 Andreas Löschel: Technological Change in Economic Models of Environmental Policy: A Survey

VOL 5.2002 Carlo CARRARO and Carmen MARCHIORI: Stable Coalitions

KNOW 8.2002 Alain DESDOIGTS: Neoclassical Convergence Versus Technological Catch-up: A Contribution for Reaching a Consensus

NRM 9.2002 Giuseppe DI VITA: Renewable Resources and Waste Recycling

KNOW 10.2002 Giorgio BRUNELLO: Is Training More Frequent when Wage Compression is Higher? Evidence from 11 European Countries

ETA 11.2002 Mordecai KURZ, Hehui JIN and Maurizio MOBILE: Endogenous Fluctuations and the Role of Monetary Policy

KNOW 12.2002 Reyer GERLAGH and Marjan W. HOFKES: Escaping Lock-in: The Scope for a Transition towards Sustainable Growth?

NRM 13.2002 Michele MORETTO and Paolo ROSATO: The Use of Common Property Resources: A Dynamic Model

CLIM 14.2002 Philippe QUIRION: Macroeconomic Effects of an Energy Saving Policy in the Public Sector

CLIM 16.2002 Francesco RICCI (i): Environmental Policy Growth when Inputs are Differentiated in Pollution Intensity

ETA 17.2002 Alberto PETRUCCI: Devaluation (Levels versus Rates) and Balance of Payments in a Cash-in-Advance Economy

Coalition Theory Network 18.2002 László Á. KOCZY (liv): The Core in the Presence of Externalities

NRM 21.2002 Fausto CAVALLARO and Luigi CIRAOLI: Economic and Environmental Sustainability: A Dynamic Approach in Insular Systems

CLIM 22.002 Barbara BUCHNER, Carlo CARRARO, Igor CERSOSIMO and Carmen MARCHIORI: Back to Kyoto? US Participation and the Linkage between R&D and Climate Cooperation

CLIM 23.2002 Andreas Löschel and Zhongxiang ZHANG: The Economic and Environmental Implications of the US Repudiation of the Kyoto Protocol and the Subsequent Deals in Bonn and Marrakech

ETA 24.2002 Marzio GALEOTTI, Louis J. MACCINI and Fabio SCHIANTARELLI: Inventories, Employment and Hours

ETA 26.2002 Adam B. JAFFE, Richard G. NEWELL and Robert N. STAVINS: Environmental Policy and Technological Change

SUST 27.2002 Joseph C. COOPER and Giovanni SIGNORELLO: Farmer Premiums for the Voluntary Adoption of Conservation Plans

SUST 28.2002 The ANSEA Network: Towards An Analytical Strategic Environmental Assessment

KNOW 29.2002 Paolo SURICO: Geographic Concentration and Increasing Returns: a Survey of Evidence

ETA 30.2002 Robert N. STAVINS: Lessons from the American Experiment with Market-Based Environmental Policies
Network
 Coalition
 theoretical
 perspective

 Carlo GIUPPONI and Paolo ROSATO: Multi-Criteria Analysis and Decision-Support for Water Management at the Catchment Scale: An Application to Diffuse Pollution Control in the Venice Lagoon

 Robert N. STAVINS: National Environmental Policy During the Clinton Years

 A. SOUBEYRAN and H. STAHN: Do Investments in Specialized Knowledge Lead to Composite Good Industries?

 G. BRUNELLO, M.L. PARISI and Daniela SONEDDA: Labor Taxes, Wage Setting and the Relative Wage Effect

 T. TIEGENBERG (iv): The Tradable Permits Approach to Protecting the Commons: What Have We Learned?

 C. FISCHER (iv): Multinational Taxation and International Emissions Trading

 S. M. CAVANAGH, W. M. HANEMANN and R. N. STAVINS: Muddled Price Signals: Household Water Demand under Increasing-Block Prices

 A. J. PLANTINGA, R. N. LUBOWSKI and R. N. STAVINS: The Effects of Potential Land Development on Agricultural Land Prices

 C. OHL (ivi): Inducing Environmental Co-operation by the Design of Emission Permits

 J. EYCKMANS, D. VAN REGEMORTER and V. VAN STEENBERGE (ivi): Is Kyoto Fatally Flawed? An Analysis with MacGEM

 A. ANTOCI and S. BORGHESI (ivi): Working Too Much in a Polluted World: A North-South Evolutionary Model

 P. G. FREDRIKSSON, Johan A. LIST and Daniel MILLIMET (ivi): Chasing the Smokestack: Strategic Policymaking with Multiple Instruments

 Z. YU (ivi): A Theory of Strategic Vertical DFI and the Missing Pollution-Haven Effect

 Y. H. FARZIN: Can an Exhaustible Resource Economy Be Sustainable?

 Y. H. FARZIN: Sustainability and Hamiltonian Value

 C. PIGA and M. VIVARELLI: Cooperation in R&D and Sample Selection

 M. SERTEL and A. SLINKO (lv): Ranking Committees, Words or Multisets

 Sergio CURRARINI (lv): Stable Organizations with Externalities

 Robert N. STAVINS: Experience with Market-Based Policy Instruments

 Scott BARRETT (liii): Towards a Better Climate Treaty

 Richard G. NEWELL and Robert N. STAVINS: Cost Heterogeneity and the Potential Savings from Market-Based Policies

 Vladimir KOTOV and Elena NIKITINA (lvii): Reorganisation of Environmental Policy in Russia: The Decade of Success and Failures in Implementation of Perspective Quests

 Vladimir KOTOV (lvii): Policy in Transition: New Framework for Russia’s Climate Policy

 Fanny MISSFELDT and Arturo VILLAVICENCO (lvii): How Can Economies in Transition Pursue Emissions Trading or Joint Implementation?

 Giovanni DI BARTOLOMEO, Jacob ENGWERDA, Joseph PLASMANs and Bas VAN AARLE: Staying Together or Breaking Apart: Policy-Makers’ Endogenous Coalitions Formation in the European Economic and Monetary Union

 Carlo CAPPANO: Demand Growth, Entry and Collusion Sustainability

 Federico MUNARI and Raffaele ORIANI: Privatization and R&D Performance: An Empirical Analysis Based on Tobin’s Q

 Federico MUNARI and Maurizio SOBRERO: The Effects of Privatization on R&D Investments and Patent Productivity

 Orley ASHENFELTER and Michael GREENSTONE: Using Mandated Speed Limits to Measure the Value of a Statistical Life

 Paolo SURICO: US Monetary Policy Rules: the Case for Asymmetric Preferences

 Rinaldo BRAU and Massimo FLORIO: Privatisations as Price Reforms: Evaluating Consumers’ Welfare Changes in the UK

 Barbara K. BUCHNER and Roberto ROSON: Conflicting Perspectives in Trade and Environmental Negotiations

 Philippe QUIRION: Complying with the Kyoto Protocol under Uncertainty: Taxes or Tradable Permits?

 Anna ALBERINI, Patrizia RIGANTI and Alberto LONGO: Can People Value the Aesthetic and Use Services of Urban Sites? Evidence from a Survey of Belfast Residents

 Marco PERCOCO: Discounting Environmental Effects in Project Appraisal
PRIV 112.2002 Isaac OTCHERE: Intra-Industry Effects of Privatization Announcements: Evidence from Developed and Developing Countries
PRIV 113.2002 Yannis KATSOUKAS and Elissavet LIKOYANNI: Fiscal and Other Macroeconomic Effects of Privatization
PRIV 115.2002 D. Teja FLOTCHO: A Note on Consumption Correlations and European Financial Integration
PRIV 2.2003 Ibiya SCHRINDE: Theory of Privatization in Eastern Europe: Literature Review
PRIV 3.2002 Wietze LISE, Claudia KEMPFT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market
KNOW 5.2003 Reyer GERLAGH: Induced Technological Change under Technological Competition
ETA 6.2003 Efrem CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model
SIEV 7.2003 Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers
NRM 8.2003 Elisaios PAPYRAKIS and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?
CLIM 9.2003 A. CAPARROS, J.-C. PEREAU and T. TAIZDAFT: North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information
KNOW 10.2003 Giorgio BRUNELLO and Daniele CHECCHI: School Quality and Family Background in Italy
CLIM 11.2003 Efrem CASTELNUOVO and Marzio GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis
KNOW 12.2003 Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art
KNOW 14.2003 Maddy JANSENS and Chris STEYAERT (lix): Theories of Diversity within Organisation Studies: Debates and Future Trajectories
KNOW 15.2003 Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP (lix): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life
KNOW 16.2003 Alexandra BITUSIKOVA (lix): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia
KNOW 17.2003 Billy E. VAUGHN and Katarina MLEKOV (lix): A Stage Model of Developing an Inclusive Community
KNOW 18.2003 Selma van LONDEN and Arie de RUIJTER (lix): Managing Diversity in a Glocalizing World
Coalition Theory Network
PRIV 20.2003 Giacomo CALZOLARI and Alessandro PAVAN (lx): Monopoly with Resale
PRIV 22.2003 Marco Liculzi and Alessandro PAVAN (lx): Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions
PRIV 23.2003 David ETTINGER (lx): Bidding among Friends and Enemies
PRIV 24.2003 Hannu VARTAINEN (lx): Auction Design without Commitment
PRIV 26.2003 Christine A. PARLOUR and Uday RAJAN (lx): Rationing in IPOs
PRIV 27.2003 Kjell G. NYBORG and Ilya A. STREBULAEV (lx): Multiple Unit Auctions and Short Squeezes
PRIV 28.2003 Anders LUNANDER and Jan-Eric NILSSON: Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts
PRIV 30.2003 Emiel MAASLAND and Sander ONDERSTAL (lx): Auctions with Financial Externalities
ETA 31.2003 Michael FINUS and Bianca RUNDHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games
KNOW 32.2003 Michele MORETTO: Competition and Irreversible Investments under Uncertainty
PRIV 33.2003 Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?
KNOW 34.2003 Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Treatment Effect Analysis
ETA 35.2003 Alessandra DEL BOCA, Marzo GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation
GG 36.2003 Matthieu GLACHANT: Voluntary Agreements under Endogenous Legislative Threats
PRIV 37.2003 Narjess BOUBAKRI, Jean-Claude COSSET and Omrane GUEHAMI: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection
CLIM 38.2003 Rolf GOLOMBEK and Michael HOEL: Climate Policy under Technology Spillovers
KNOW 39.2003 Slim BEN YOUSSEF: Transboundary Pollution, R&D Spillovers and International Trade
CTN 40.2003 Carlo CARRARO and Carmen MARCHIORI: Endogenous Strategic Issue Linkage in International Negotiations
KNOW 42.2003 Timo GOESCHL and Timothy SWANSON: On Biology and Technology: The Economics of Managing Biotechnologies
CLIM 44.2003 Katrin MILLOCK and Céline NAUGES: The French Tax on Air Pollution: Some Preliminary Results on its Effectiveness
PRIV 45.2003 Bernardo BORTOLOTTI and Paolo PINOTTI: The Political Economy of Privatization
SIEV 46.2003 Elbert DJUKGRAAF and Herman R.J. VOLLEBERGH: Burn or Bury? A Social Cost Comparison of Final Waste Disposal Methods
ETA 47.2003 Jonas HORBACH: Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany
CLIM 48.2003 Lori SNYDER, Nolan MILLER and Robert STAVINS: The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing
CTN 50.2003 László A. KOCZY and Luc LAUWERS (lx): The Minimal Dominant Set is a Non-Empty Core-Extension
CTN 51.2003 Matthew O. JACKSON (lx): Allocation Rules for Network Games
CTN 52.2003 Ana MAULEON and Vincent VANNETELBOSCH (lx): Farsightedness and Cautiousness in Coalition Formation
CTN 54.2003 Matthew HAAG and Roger LAGUNOFF (lx): On the Size and Structure of Group Cooperation
CTN 55.2003 Taiji FURUSAWA and Hideo KONISHI (lx): Free Trade Networks
CTN 56.2003 Halis Morat YILDIZ (lx): National Versus International Mergers and Trade Liberalization
CTN 57.2003 Santiago RUBIO and Alistair ULPH (lx): An Infinite-Horizon Model of Dynamic Membership of International Environmental Agreements
KNOW 58.2003 Carole MAIGNAN, Dino PINELLI and GIANMARCO I.P. OTTAVIANO: ICT, Clusters and Regional Cohesion: A Summary of Theoretical and Empirical Research
KNOW 59.2003 Giorgio BELLETTINI and GIANMARCO I.P. OTTAVIANO: Special Interests and Technological Change
ETA 60.2003 Ronnie SCHOB: The Double Dividend Hypothesis of Environmental Taxes: A Survey
CLIM 61.2003 Michael FINUS, EKko van IERLAND and Robert DELLINK: Stability of Climate Coalitions in a Cartel Formation Game
SIEV 63.2003 Alberto PETRUCCI: Taxing Land Rent in an Open Economy
CLIM 64.2003 Joseph E. ALDY, Scott BARRETT and Robert N. STAVINS: Thirteen Plus One: A Comparison of Global Climate Policy Architectures
SIEV 65.2003 Edo DEFARCESCO: The Beginning of Organic Fish Farming in Italy
SIEV 66.2003 Klaus CONRAD: Price Competition and Product Differentiation when Consumers Care for the Environment
CLIM 68.2003 ZhongXiang ZHANG: Open Trade with the U.S. Without Compromising Canada’s Ability to Comply with its Kyoto Target
KNOW 69.2003 David FRANTZ (lx): Lorenzo Market between Diversity and Mutation
KNOW 70.2003 Ercole SORI (lx): Mapping Diversity in Social History
KNOW 71.2003 Lijijana DERU SIMIC (lxii): What is Specific about Art/Cultural Projects?
KNOW 72.2003 Natalya V. TARANOVA (lxii): The Role of the City in Fostering Intergroup Communication in a Multicultural Environment: Saint-Petersburg’s Case
KNOW 73.2003 Kristine CRANE (lxii): The City as an Arena for the Expression of Multiple Identities in the Age of Globalisation and Migration
KNOW 74.2003 Kazuma MATOBA (lxii): Glocal Dialogue- Transformation through Transcultural Communication
KNOW 75.2003 Catarina REIS OLIVEIRA (lxii): Immigrants’ Entrepreneurial Opportunities: The Case of the Chinese in Portugal
KNOW 76.2003 Sandra WALLMAN (lxii): The Diversity of Diversity - towards a typology of urban systems
KNOW 77.2003 Richard PEARCE (lxii): A Biologist’s View of Individual Cultural Identity for the Study of Cities
KNOW 78.2003 Vincent MERK (lxii): Communication Across Cultures: from Cultural Awareness to Reconciliation of the Dilemmas
KNOW 79.2003 Giorgio BELLETTINI, Carlotta BERTI CERONI and GIANMARCO I.P. OTTAVIANO: Child Labor and Resistance to Change
ETA 80.2003 Michele MORETTO, Paolo M. PANTEGHINI and Carlo SCARPA: Investment Size and Firm’s Value under Profit Sharing Regulation
IEM 81.2003 Alessandro LANZA, Matteo MANERA and Massimo GIOVANNINI: Oil and Product Dynamics in International Petroleum Markets
CLIM 82.2003 Y. Hossein FARZIN and Jinhua ZHAO: Pollution Abatement Investment When Firms Lobby Against Environmental Regulation
Giuseppe DI VITA: Is the Discount Rate Relevant in Explaining the Environmental Kuznets Curve?

Reyer GERLAGH and Wietze LISE: Induced Technological Change Under Carbon Taxes

Rinaldo BRAU, Alessandro LANZA and Francesco PIGLIARU: How Fast are the Tourism Countries Growing? The cross-country evidence

Elena BELLINI, Gianmarco I.P. OTTAVIANO and Dino PINELLI: The ICT Revolution: opportunities and risks for the Mezzogiorno

Lucas BRETSCHGER and Sjak SMULDERS: Sustainability and Substitution of Exhaustible Natural Resources. How resource prices affect long-term R&D investments

Johan EYCKMANS and Michael FINUS: New Roads to International Environmental Agreements: The Case of Global Warming

Marzio GALEOTTI: Economic Development and Environmental Protection

Marzio GALEOTTI: Environment and Economic Growth: Is Technical Change the Key to Decoupling?

Marzio GALEOTTI and Barbara BUCHNER: Climate Policy and Economic Growth in Developing Countries

A. MARKANDYA, A. GOLUB and E. STRUKOVA: The Influence of Climate Change Considerations on Energy Policy: The Case of Russia

Andrea BELTRATTI: Socially Responsible Investment in General Equilibrium

Parkash CHANDER: The γ-Core and Coalition Formation

Matteo MANERA and Angelo MARZULLO: Modelling the Load Curve of Aggregate Electricity Consumption Using Principal Components

Alessandro LANZA, Matteo MANERA, Margherita GRASSO and Massimo GIOVANNINI: Long-run Models of Oil Stock Prices

John CROWLEY, Marie-Cecile NAVES (lxiii): Anti-Racist Policies in France. From Ideological and Historical Schemes to Socio-Political Realities

Richard THOMPSON FORD (lxiii): Cultural Rights and Civic Virtue

Alaknanda PATEL (lxiii): Cultural Diversity and Conflict in Multicultural Cities

David MAY (lxiii): The Struggle of Becoming Established in a Deprived Inner-City Neighbourhood

Sébastien ARCAND, Danielle JUTEAU, Sirma BILGE, and Francine LEMIRE (lxiii): Municipal Reform on the Island of Montreal: Tensions Between Two Majority Groups in a Multicultural City

Barbara BUCHNER and Carlo CARRARO: China and the Evolution of the Present Climate Regime

Barbara BUCHNER and Carlo CARRARO: Emissions Trading Regimes and Incentives to Participate in International Climate Agreements

Anil MARKANDYA and Dirk T.G. RÜBBELKE: Ancillary Benefits of Climate Policy

Anne Sophie CRÉPIN: Management Challenges for Multiple-Species Boreal Forests

Anne Sophie CRÉPIN: Threshold Effects in Coral Reef Fisheries

Sara ANIYAR (lxiv): Estimating the Value of Oil Capital in a Small Open Economy: The Venezuela’s Example

Kenneth ARROW, Partha DASGUPTA and Karl-Göran MÄLER (lxiv): Evaluating Projects and Assessing Sustainable Development in Imperfect Economies

Anastasios XEPAPADEAS and Catarina ROSETA-PALMA (lxiv): Instabilities and Robust Control in Fisheries

Charles PERRINGS and Brian WALKER (lxiv): Conservation and Optimal Use of Rangelands

Jack GOODY (lxiv): Globalisation, Population and Ecology

Carlo CARRARO, Carmen MARCHHORI and Sonia OREFFICE: Endogenous Minimum Participation in International Environmental Treaties

Guillaume HAERINGER and Myrna WOODERS: Decentralized Job Matching

Hideo KONISHI and M. Utku UNVER: Credible Group-Deviation in Multi-Partner Matching Problems

Carlo CARRARO, Alessandro LANZA and Valeria PAPPONETTI: One Thousand Working Papers
2002 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>VOL</td>
<td>Voluntary and International Agreements</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SUST</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Dino Pinelli</td>
</tr>
<tr>
<td>MGMT</td>
<td>Corporate Sustainable Management</td>
<td>Andrea Marsanich</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

2003 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>