Tourism, Trade and Domestic Welfare
Jean-Jacques Nowak, Mondher Sahli and Pasquale M. Sgro

NOTA DI LAVORO 24.2004

FEBRUARY 2004
NRM – Natural Resources Management

Jean-Jacques Nowak, Université Lille I
Mondher Sahli, Victoria University of Wellington
Pasquale M. Sgro, Deakin University

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm
Social Science Research Network Electronic Paper Collection:
http://papers.ssrn.com/abstract_id=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
Tourism, Trade and Domestic Welfare

Summary
Tourism has been regarded as a major source of economic growth and a good source of foreign exchange earnings. Tourism has also been considered as an activity that imposes costs on the host country. Such costs include increased pollution, congestion and despoliation of fragile environments and intra-generational inequity aggravation. One aspect that has been ignored is the general equilibrium effects of tourism on the other sectors in the economy. These effects can be quite substantial and should be taken into account when assessing the net benefits of a tourism boom on an economy. This paper presents a model which captures the interdependence between tourism and the rest of the economy, in particular agriculture and manufacturing. We examine the effect of a tourist boom on structural adjustment, commodity and factor prices and more importantly resident welfare. An important result obtained is that the tourist boom may “immiserize” the residents. This occurs because of two effects. The first, a favourable effect due to an increase in the relative price of the non-traded good which is termed the secondary terms of trade effect. The second, a negative effect due to an efficiency loss that occurs in the presence of increasing returns to scale in manufacturing. If this second effect outweighs the first effect, resident immiserization occurs.

Keywords: Tourism, Trade welfare

JEL Classification: F10, F22

This paper was presented at the international conference on “Tourism and Sustainable Economic Development – Macro and Micro Economic Issues” held in Chia, Italy, on 19-20 September, 2003 and jointly organised by CRENoS (Università di Cagliari e Sassari, Italy) and Fondazione Eni Enrico Mattei, Italy, and supported by the World Bank.

Address for correspondence:
Pasquale M. Sgro
School of Economics
Deakin University
221 Burwood Highway
Burwood Victoria 3125
Australia
Phone: +61 3 92446034
Fax: +61 3 92446064
E-mail: sgro@deakin.edu.au
1. Introduction

Tourism has often been regarded as a major source of economic growth. Various governments often invest in infrastructure to promote tourism and growth\(^1\). Tourism supplements the foreign exchange earnings already derived from trade in commodities and sometimes finances the imports of the capital goods necessary for the growth of the manufacturing sector\(^2\). Tourism has also been regarded as a mechanism for generating increased income and employment both in the formal and informal sectors\(^3\). Hazari and Ng (1993) have also highlighted important differences between trade in commodities and tourism\(^4\). However, international tourism has also at times been considered an activity that imposes costs on the host country. Much attention in this context has been paid to inflationary and low multiplier effects of tourism expansion\(^5\), increased pollution, congestion and despoilation of fragile environments\(^6\), intra-generational inequity aggravation\(^7\) and even to adverse sociocultural impacts\(^8\). Less obvious but more important costs of tourism have often been neglected such as the adverse impacts of a tourism boom on other sectors resulting from general equilibrium effects. However, theoretical and empirical studies tell us that these effects can be quite substantial and have to be taken into account when assessing the net benefit of a tourism boom on an economy\(^9\).

The model used in this paper captures the interdependence and interaction between tourism and the rest of the economy; in particular, agriculture and manufacturing. This is important in view of the public debate on the effects of tourism as it highlights the problem of competition for
resources between two export-earning activities, agriculture and tourism. Furthermore, there is a concern as to whether tourism promotes or hinders the development of the manufacturing sector. Moreover, it is important to examine the welfare effects of tourism.

Specifically a tourist boom and its consequences are examined in a three-sector model of trade consisting of two internationally traded and one non-traded good. An important feature of the model is that the manufacturing good is produced with increasing returns to scale while the other goods are produced under constant returns to scale. A large proportion of a tourist’s consumption is generally of non-traded goods and services and this consumption interacts with other sectors in a general equilibrium setting. Using this model, we analyse the effect of a tourism boom on structural adjustment, commodity and factor and product prices and most importantly resident welfare. An important result obtained is that the tourist boom may “immiserize” the residents. This occurs because of two effects. The first, a favourable effect due to an increase in the relative price of the non-traded good which is termed the secondary terms of trade effect. The second, a negative effect due to an efficiency loss that occurs in the presence of increasing returns to scale in manufacturing. If this second effect outweighs the first effect, resident immiserization occurs\(^{10}\).

2. **The Model**

Our analysis uses a hybrid of the Ricardo-Viner-Jones (RVJ) and Heckscher-Ohlin (H-O) models under the assumption of full employment. The economy consists of three sectors; one a non-traded goods sector producing \(X_N\), an agricultural sector producing an
exportable \(X_A \), and a manufacturing sector producing an importable \(X_M \). Assuming a small open economy, the terms of trade are given exogenously. It is assumed that commodities \(X_j \) \((j=N,A)\) are produced under constant returns to scale and \(X_M \) with increasing returns to scale. The production functions for the agriculture and non-traded goods sectors can be written as follows:

\[
X_j = F_j(L_j, T_j) \quad j = A, N
\]

(1)

where \(L_j \) and \(T_j \) represent allocations of labour and land respectively utilized in the \(j^{th} \) sector\(^\text{11}\). These production functions exhibit positive and diminishing marginal products.

In the manufacturing sector, the production functions for a typical firm and the industry as a whole are as follows\(^\text{12}\):

\[
x_M^i = g_M^i(X_M) \cdot F_M^i(l_M^i, k_M^i) \quad i = 1, 2, \ldots N
\]

(2a)

and

\[
X_M = G_M(L_M, K_M) = g_M(X_M) \cdot F_M(L_M, K_M)
\]

(2b)

where \(x_M^i \) is a typical firm’s output of the manufactured good, \(X_M \) is the total output in the manufacturing sector; \(l_M^i \) and \(k_M^i \) are labour and capital respectively employed by a typical firm in this sector; \(L_M \) and \(K_M \) are the total labour and specific capital employed in this sector. The increasing returns to scale in our model are output-generated and are external to the firm and internal to the industry. These assumptions ensure that perfect competition prevails at the
firm level and that the economy will produce along its social transformation curve. Also note that the production function for the manufacturing sector, X_M, is multiplicatively separable.

The production function F_M in equation (2b) is linearly homogenous in inputs. The increasing returns to scale are captured by the term $g_M(X_M)$ which is a positive function defined on the open interval $]0, +\infty[$ and is twice differentiable. This type of increasing returns to scale is “neutral” in the sense that the capital intensity used in production is independent of the scale of production. It is assumed that X_M is homothetic in L_M and K_M.

Using the production function X_M defined in equation (2b), the rate of returns to scale, e_M, is specified below:

$$e_M = \left(\frac{dg_M}{dX_M}\right) \cdot \left(\frac{X_M}{g_M}\right) = F_M(L_M, K_M)g_M'(X_M)$$ \hspace{1cm} (3)

where e_M is defined over the open interval $]0, 1[$ in the case of increasing returns.

The full employment conditions can be specified as follows:

$$a_{LA}X_A + a_{LN}X_N = L_{AN} = \bar{L} - L_M$$ \hspace{1cm} (4)

$$a_{TA}X_A + a_{TN}X_N = \bar{T}$$ \hspace{1cm} (5)

$$a_{LM}X_M = L_M$$ \hspace{1cm} (6)

$$a_{KM}X_M = K_M = \bar{K}$$ \hspace{1cm} (7)
where the \(a_{ij} \)'s denote the variable input coefficients. \(L_{AN} \) the amounts of labour in the agriculture and non-traded goods sectors and \(L_M \) is the amount of labour used in the manufacturing sectors, \(L, T \) and \(K \) are the inelastically supplied factors labour, land and capital respectively. Note that the subset of sectors A and N forms a Heckscher-Ohlin structure with an endogenous labour supply [equations (4) and (5)]. The endogenous labour supply \((L - L_M) \) is determined by the amount of labour used in the manufacturing sector\(^3\). There is an RVJ structure between this subset and the manufacturing sector.

Under the assumption of profit maximization, interior solution and competitive markets, the price side of our model is as follows:

\[
\begin{align*}
 a_{LA} w + a_{tA} t &= 1 \quad (8) \\
 a_{LN} w + a_{PN} t &= P_N \quad (9) \\
 a_{LM} w + a_{KM} r &= P \quad (10)
\end{align*}
\]

where \(P_N \) and \(P \) are the relative price of the non-traded and manufactured good respectively; \(w, t \) and \(r \) are the wage rate, rental on land and the rental on capital. The agriculture good has been chosen as the numeraire. Assuming a small open economy, the terms of trade, \(P \), is given. The relative price of the non-traded good, \(P_N \), is determined domestically by the forces of demand and supply.

The quasi-concave aggregate utility function for the residents is as follows:
\[U = U(D_A, D_M, D_N) \]
(11)

where \(D_j, (j = A, M, N) \) denotes the demand for the agriculture, manufactured and non-traded goods respectively by the residents.

Given utility maximization, it follows (from the equilibrium conditions) that:

\[
\frac{\partial U}{\partial D_A} = \frac{1}{P_M} \frac{\partial U}{\partial D_M} = \frac{1}{P_N} \frac{\partial U}{\partial D_N}
\]
(12)

where \(\frac{\partial U}{\partial D_j} (j = A, M, N) \) denotes marginal utility.

The demand for the non-traded good consists of resident demand \((D_N)\) and tourist demand \((D_{NT})\) which can be written as follows:

\[
D_N = D_N(P, P_N, Y)
\]
(13)

\[
D_{NT} = D_{NT}(P, P_N, \Delta)
\]
(14)

where \(Y \) is resident income and \(\Delta \) is a variable that captures foreign income and other exogenous domestic amenities such as indigenous culture, fashion, special events and so on that distinguish tourist attractions in one country from another. All goods in consumption are substitutes and normal. We assume that \(\frac{\partial D_{NT}}{\partial \Delta} > 0 \) so that a tourist boom in our model is captured by an exogenous increase in \(\Delta \).
The market clearing conditions for the non-traded good and the resident budget constraint are as follows:

\[D_N + D_{NT} = X_N \] \hspace{1cm} (15)

\[Y = P_N X_M + P_N X_N + X_A = P_N D_N + P_D M + D_A + D_A \] \hspace{1cm} (16)

It is useful to represent the above model by using two diagrams, which highlight the interaction among the sectors and the factors of production. We represent the initial equilibrium of the model in Figure 1 where in quadrant II, the unit cost function for the agricultural sector is drawn as a \(P_A \) in the space \((w,t)\). Also shown are the iso-cost curves for the agriculture (given \(P_A = 1 \)) and non-traded goods sector \(P_N^0 \). These curves are drawn under the assumption that the non-traded goods sector is labour intensive.

Given a solution for \(P_N \) from the non-traded good market (see Figure 2, quadrant II), we can determine the equilibrium values of \(w \) and \(t \) as shown by \(w^o \) and \(t^o \). In quadrant I, we have the isocost curve for the manufacturing sector \(P \) whose price is internationally given for the small country case. The equilibrium solution for \(w^o \) also determines the equilibrium value of \(r \) as shown by \(r^o \).

In quadrant III, the curve \(aa' \) is the marginal product of labour curve in the manufacturing sector. The mathematical conditions necessary for this case are derived in the section III. Generally the marginal product curve for an increasing returns to scale technology can have any
shape [Panagariya (1986)]. From quadrant III, the equilibrium value w^* enables us to determine the employment level L^*_M in the manufacturing sector. Since OL^*_M of total labour supply is used in the manufacturing sector, the residual $L - OL^*_M$ determines the supply of labour for the other two sectors, L^*_A.

Given this residual supply L^*_A and the quantity of land, T, we can draw the Edgeworth-Bowley box in quadrant IV of Figure 1. Also illustrated is the contract curve O_AO_N drawn under the assumption that the non-traded good sector is labour intensive. Given the equilibrium wage/rental ratio on land determined in quadrant II, we can identify the point $D^0(\bar{X}_A, \bar{X}_N)$ on the contract curve which determines the allocation of labour and land between the two sectors, agriculture and non-traded goods. From the factor allocation in quadrant IV of Figure 1, we can derive the production possibility curve Z^0Z^0 for goods X_A and X_N in quadrant I of Figure 2, given the quantity of labour L^*_A.

In quadrant II of Figure 2, we have drawn the tourist demand curve D_{NT} and the non-traded good supply curve X_N. Note that for illustrative purposes only, we have made the simplifying assumption that residents do not consume the non-traded good. The actual results in the model presented in the following section are derived for the general case of both resident and tourist demand for the non-traded good. The equilibrium price and quantity are shown as P^*_N and X^*_N. In quadrant I, given P^*_N, we can determine the production point $F^0(\bar{X}_A, \bar{X}_N)$ while in quadrant III, we have the demand (D^0_M) and private (pmc) and social (smc) marginal cost curves for the manufacturing sector. Note that the axes
are labelled X_M, D_M and P. Given the international price P, to satisfy the demand D_M^0, we import $D_M^0 X_M^0$ of the manufacturing good. Due to the increasing returns to scale technology in this sector, the social marginal cost curve is below the private marginal cost curve, giving rise to a welfare loss represented by the shaded area. While in quadrant IV, we determine resident welfare. The national income budget line is represented by the line $Y^0 Y^1$ while its slope is determined by the relative price ratio P. The vertical intercept of this budget line $0Y^0$ is made up of the sum of $X_N^0 + P_N^0 X_N^1 + P X_M^0$, the values of which can be read from quadrant I and III. Also illustrated in quadrant I of Figure 2 is OY_{AN} which represents the income generated in the Heckscher-Ohlin subset of the economy. Given the resident utility function U defined in equation (11), with the restriction that resident consumption of the non-traded good is zero, we can determine the social indifference curve U_0 with equilibrium at G^0. Note that the G^0 includes the imports $D_M^0 X_M^0$ of the manufactured good derived in quadrant III.

3. Results

In this section, we present the implications of a tourist boom on relative prices, outputs, factor incomes and resident welfare. The tourism boom is captured by change in Δ in equation (14).

By totally differentiating the cost equations (8) and (9) which make up the Heckscher-Ohlin bloc, we obtain the standard Stolper-Samuelson result:

$$\hat{w} = \frac{\theta_{PA}}{\theta_P} \hat{P}_N$$

(17)
Figure 2
\[
\hat{\iota} = \frac{\theta_{LA}}{\theta} \hat{P}_N
\]

(18)

where the \(\theta_{ij} \)'s are the cost shares, the \(^\wedge\) notation denotes relative changes and

\[
|\theta| = \theta_LN - \theta_LA = \theta_TA - \theta_TN
\]

describes the labour/land factor intensity which is positive for the case where the non-traded good is labour intensive vis-à-vis the agriculture good. Thus if the price of \(\hat{P}_N \), the non-traded good, rises, \(\hat{w} \), the price of the factor used intensely in its production, rises and \(\iota \) falls.

Totally differentiating (2b), (10), using (3) and after some manipulation, we obtain

\[
e_M \hat{X}_M = \theta_{LM} \hat{w} + \theta_{KM} \hat{r}
\]

(19)

From equation (7), and (17) – (19) above, we obtain the following expression for \(\hat{X}_M \):

\[
\hat{X}_M = -\phi_M \hat{P}_N
\]

(20)

where \(\phi_M = \frac{\theta_{LM} \theta_{TA}}{1 - e_M} \hat{\xi}_M \theta \), \(\hat{\xi}_M = \left(\frac{e_M}{1 - e_M} \right) \theta_{LM} - \frac{\theta_{KM}}{\sigma_M} \) and \(\sigma_j \) is the elasticity of substitution between the primary factors in sector j. The term \(\hat{\xi}_M \) is the elasticity of the marginal physical product of labour with respect to a change in labour in \(X_M \) and is assumed to be negative for stability\(^1\).\(^4\).

From equation (6)and (20), we obtain the following expression for change in the labour demand in the manufacturing sector:
\[
\hat{L}_M = -\frac{\theta_{TA}}{\theta \xi_M} \hat{P}_N
\] \hspace{1cm} (21)

By using equation (21), we have the change in the labour supply for the agriculture and non-traded goods sectors:

\[
\hat{L}_{AN} = -\frac{\mu_M}{\mu_{AN}} \frac{\theta_{TA}}{\xi_M} \hat{P}_N
\] \hspace{1cm} (22)

where \(\mu_j \), \((j = M, AN) \) is the labour share in \(j \), e.g. \(\mu_{AN} = \frac{L_{AN}}{L} \).

From the full employment conditions in the Heckscher-Ohlin subset [equations (4), (5)] and (22), we obtain the following output changes for sectors \(X_A \) and \(X_N \).

\[
\hat{X}_A = -\phi_A \hat{P}_N
\] \hspace{1cm} (23)

\[
\hat{X}_N = \phi_N \hat{P}_N
\] \hspace{1cm} (24)

where \(\phi_j = \left[\left(\lambda_{L_i} \theta_T + \lambda_{T_i} \theta_L \right) - \lambda_{T_i} \frac{\mu_M}{\mu_{AN}} \frac{\theta_{TA}}{\xi_M} \right] \frac{1}{\theta \xi_M} \). \(i, j = A, N, i \neq j \). The term \(\phi_j \) is the price elasticity of supply in sector \(j \); \(\lambda_{L_i} \) and \(\lambda_{T_i} \) are factor shares defined in...
sectors X_A and X_N. For example, $\lambda_{LA} = \frac{L_A}{L_{AN}}$, $\lambda_{TN} = \frac{T_N}{T}$.

Note that $|\lambda| = \lambda_{LN} - \lambda_{TN} = \lambda_{TA} - \lambda_{LA}$ has the same sign as $|\rho|$ since there are no distortions in the labour market. $\rho_{i}, i = T, L$ is the elasticity of factor i in sector A and N with respect to (p_{iW}) at constant outputs and factor endowments.

From the full employment condition (4), (6), (7), the production function (2b), and using the definition of e_{M}, we obtain the following relationship between the slope of the production possibility surface and relative prices:

$$dX_A + P_N dX_N + P_M dX_M = e_M dX_M$$ (25)

Note that due to the presence of a distortion (here as increasing returns to scale), there is a non-tangency between the production possibility surface and relative prices.

Using equations (11), (12), (16) and (25) we obtain the following expression for the change in resident welfare:

$$\hat{y} = \gamma_N \hat{D}_N + \gamma_M \hat{D}_M + \gamma_A \hat{D}_A = \psi \hat{P}_n$$ (26)

where $\psi = \left[\delta_{NT} + \left(\frac{e_M}{1 - e_M} \right) \frac{\theta_{LA}}{\theta} \delta_M \frac{\theta}{\xi_{LM}} \right] \leq 0$.
δ_{NT} is the share of international tourist demand in national income, and δ_M is the share of manufacturing output in national income.

By differentiating (13) – (15), we obtain:

$$\hat{X}_N = \hat{D}_{NT} \alpha_{NT} + \hat{D}_N \alpha_N$$ \hspace{1cm} (27)

where $\alpha_N = \frac{D_N}{X_N}$, $\alpha_{NT} = \frac{D_{NT}}{X_N}$

$$\hat{D}_{NT} = - \varepsilon_{NT} \hat{p}_N + \beta_{NT} \hat{\Delta}$$ \hspace{1cm} (28)

$$\hat{D}_N = - \varepsilon_N \hat{p}_N + \eta_N \hat{y}$$ \hspace{1cm} (29)

where $\varepsilon_i > 0 (i = N, NT)$ is the compensated price elasticity of demand, η_N is the resident income elasticity of the non-traded goods and β_{NT} measures the sensitivity of the tourist demand to the tourist shock.

Using (24), (26)-(29) we obtain:

$$\hat{p}_N = (\alpha_{NT} \beta_{NT} / \Omega) \hat{\Delta}$$ \hspace{1cm} (30)
where $\Omega = \phi_N + \alpha_{NT} e_{NT} + \alpha_N e_N - \alpha_N e_N \Psi$ is the excess supply elasticity of the non-traded good in general equilibrium and is positive for stability in this market.

From the above equations, we are now able to describe the consequences of an increase in tourism on the key variables.

Irrespective of the labour intensity of the non-traded goods sector, its price and output always increase and the output of the agricultural sector falls. In our model, P_N can be interpreted as the relative price of an export and hence its increase is, in fact, an improvement in the terms of trade.

The response of the other key variables depends on the labour intensity of the non-traded goods sector. If this sector is labour intensive ($\theta > 0$), the wage rate increases and both the rental on land and capital fall. Due to the wage increase (and resultant increase in costs), the output of the manufacturing sector falls. Note that the tourist expansion comes at a cost to the manufacturing sector. Moreover as the manufacturing output was already sub-optimal at the initial market equilibrium (due to the increasing returns to scale), this decrease in output worsens the welfare loss (second term in square brackets of Ψ in (26)). This welfare loss can outweigh the welfare gain [captured by δ_{NT} in Ψ in (26)] due to the terms of trade effect [$\hat{P}_N > 0$]. Hence resident welfare (income) may fall as a result of the increase in tourism.
If the non-traded goods is land intensive ($|\theta| < 0$), the wage rate falls, the rental on capital and land rise and the outputs of both X_M and X_N rise. Hence, the expansion in tourism helps the development of the manufacturing sector. Resident welfare (income) rises as both the effects referred to above are positive. That is, the terms of trade effect is still favourable while the expansion of the manufacturing sector reduces the welfare loss at the market equilibrium15.

15
Figure 3
Figure 4
It will be useful to use our Figures 1 and 2 to illustrate some of the results. We will illustrate the case of immiserizing growth. In quadrant II of Figure 4, the increase in tourism induces an increase in P_N. Recall that, for illustrative purposes only, we assume that residents do not consume X_N. By the Stolper-Samuelson effect the wage rate, w, increases at the expense of the rental rates on land as described in quadrant II of Figure 3. The manufacturing sector reduces its demand for labour as shown in quadrant III of Figure 3, which results in an increased labour supply for the HOS subset of the economy (X_A and X_N). In quadrant IV of Figure 3, we have represented both the factor prices and the labour supply effects on outputs X_A and X_N. The expansion of X_N and contraction of X_A production are illustrated in quadrant I of Figure 4 by the shift in the production point from F^o to F'. We can identify the terms of trade and increased labour supply effects on resident income in quadrant I of Figure 4 by the distance $Y_{AN}^oY_{AN}'$.

As a result of the increases in P_N, both the $(pmc)_M$ and $(smc)_M$ curves shift to the left with the pmc_M curve shifting more than the $(smc)_M$ curve because the private firm in X_M do not internalise the effects of the increasing returns to scale. As a result the welfare loss (represented by the shaded area) becomes largest. This increase in the welfare loss outweighs the increase in income from the terms of trade effect as illustrated by the movement from the social indifference curve U^o to U^1 in quadrant IV of Figure 4.
4. **Conclusion**

It is frequently asserted that international tourism may be costly to the host country. A great deal of attention has been paid to the most obvious costs due to externalities associated with tourism activity (pollution, congestion and sociocultural impacts). However a general equilibrium analysis of the effects of tourism on structural adjustment and welfare in the presence of externalities is lacking. This paper addresses this problem.

Under certain conditions, welfare and manufacturing output may fall as a result of increased tourism. This can occur when the non-traded tourism sector is more labour intensive than the agricultural traded sector. The empirical evidence on factor intensities suggest that this case is more likely to prevail and this theoretical possibility should therefore be taken seriously\(^{16}\).

The distortion literature establishes that a tax-cum-subsidy policy is required to correct the distortion. Note that due to the monopoly power in trade in tourism, the taxing opportunities are broader, for example, tourism tax receipts could be used to subsidize the manufacturing sector.
Footnotes

* We thank an anonymous referee for useful comments. The first two authors would like to thank the French Embassy in Australia for its generous support which helped finance this research.

1. Various governments have pursued aggressive policies for promoting tourism. Singapore, Hong Kong, Thailand, Tunisia and Egypt are prime examples of such policies. See also the papers by Copeland (1991), and Nowak and Sahli (1999) who highlight the differences between conventional trade and tourism.

2. See for example Sinclair and Bote Gomez (1996) for Spain and Pye and Lin (1983) for Asian NIC.

4. Domestic residents pay for some of these amenities via taxes. For further elaboration on the differences between tourism trade and commodities trade, see Copeland (1991), Hazari and Sgro (1995), Hazari and Nowak (2000).

5. See for example Cazes (1992) and Sheldon (1990).

9. Empirical evidence shows that in some cases tourism development is detrimental to agriculture, as on the Spanish Mediterranean coast (Tyrakowski (1986)), in Caribbean
countries (Bryden (1973), Weaver (1988)), in Bali or in many parts of Mexico (Latimer (1985)). Computable general equilibrium modeling experiments on Australia (Adams and Parmenter (1995)) and Hawaii (Zhou et al. (1997)) also suggest that an increase in the demand for tourism may seriously crowd out agriculture and manufacturing activities, with no change in overall output.

10. In the “Dutch Disease” literature, Corden and Neary (1982), and Neary and van Wijnbergen (1986) have emphasized the detrimental consequences of a booming traded good sector and other traded good sectors, especially on manufacturing industry. In our model, since the foreign tourists consume the local non-traded good, the booming sector is the non-traded sector, which makes our analysis different to the “Dutch Disease” model, although structural effects may still exist.

11. Several studies stress competition for the using of land and labor between agriculture and tourism, see Bryden (1973), Latimer (1985), Telfer and Wall (1996).

12. This particular formulation is used, for example, by Panagariya (1980) (1986), Herberg and Kemp (1969) and Choi and Yu (1984).

13. In general with endogenous labour supply the price-output response maybe perverse and the production possibility curve may not be concave [Kemp and Jones (1962), Martin and Neary (1980)]. To avoid this problem in the H-O subset we impose restrictions on the price elasticities.

14. Panagariya (1986) proved that a necessary and sufficient condition for stability in the RVJ model is that the weighted sum of the sectoral marginal physical product of labour be negative. In this case the price-output response is normal and the production
possibility curve is concave. Given that there are no production or factor market distortions from the H-O subset (sectors X_A and X_N), and given the footnote 13 above, it is easy to show that the corresponding elasticity is always negative for this subset. Therefore it is sufficient to assume $\xi_M < 0$ for stability in our model.

15. Also note that both the Heckscher-Ohlin-Komiya (HOK) and the RVJ models can be derived from our more general model by making specific simplifying assumptions. In the HOK model, by allowing capital mobility between all the sectors, we obtain the price and output results of Komiya (1967) and the welfare result does not have a terms of trade effect. Welfare will rise or fall depending on the labour intensity of X_N vis-à-vis the other two sectors. To obtain the RVJ model, we add land immobility between X_A and X_N. In this case the rise in P_N always increases the wage rate and the results are qualitatively identical to the case above where ($|\theta| > 0$), i.e. the non-traded good sector is labour intensive. Also note that the return to the specific factor in the non-traded good sector in the RVJ model rises but in our model decreases. Our model is also based on the assumption of competitive markets, full employment and interior solutions.

References

Krueger A.O. et al. (1983), Trade and Employment in Developing Countries: synthesis and conclusions, NBER, Chicago: The University of Chicago Press.

NOTE DI LAVORO PUBLISHED IN 2003

<table>
<thead>
<tr>
<th>Volume</th>
<th>Title</th>
<th>Authors/Editors</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIV 2.2003</td>
<td>Ibolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review</td>
<td></td>
</tr>
<tr>
<td>PRIV 3.2003</td>
<td>Wietze LSE, Claudia KEMFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market</td>
<td></td>
</tr>
<tr>
<td>KNOW 5.2003</td>
<td>Reyer GERLAGH: Induced Technological Change under Technological Competition</td>
<td></td>
</tr>
<tr>
<td>ETA 6.2003</td>
<td>Efrem CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model</td>
<td></td>
</tr>
<tr>
<td>SIEV 7.2003</td>
<td>Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers</td>
<td></td>
</tr>
<tr>
<td>NRM 8.2003</td>
<td>Elissaios PAPYRakis and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?</td>
<td></td>
</tr>
<tr>
<td>CLIM 9.2003</td>
<td>A. CAPARROS, J.-C. PEREAU and T. TAZDAIT: North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information</td>
<td></td>
</tr>
<tr>
<td>KNOW 10.2003</td>
<td>Giorgio BRUNELLO and Daniele CHECCHI: School Quality and Family Background in Italy</td>
<td></td>
</tr>
<tr>
<td>CLIM 11.2003</td>
<td>Erefm CASTELNUOVO and Marzio GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis</td>
<td></td>
</tr>
<tr>
<td>KNOW 12.2003</td>
<td>Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural Diversity: What are we all set up for?</td>
<td></td>
</tr>
<tr>
<td>KNOW 14.2003</td>
<td>Maddy JANSSENS and Chris STEYAERT (lix): Theories of Diversity within Organisation Studies: Debates and Future Trajectories</td>
<td></td>
</tr>
<tr>
<td>KNOW 15.2003</td>
<td>Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP (lix): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life</td>
<td></td>
</tr>
<tr>
<td>KNOW 16.2003</td>
<td>Alexandra BITUSIKOVA (lix): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia</td>
<td></td>
</tr>
<tr>
<td>KNOW 17.2003</td>
<td>Billy E. VAUGHN and Katarina MLEKOV (lix): A Stage Model of Developing an Inclusive Community</td>
<td></td>
</tr>
<tr>
<td>KNOW 18.2003</td>
<td>Selma van LONDON and Arie de RUIJTER (lix): Managing Diversity in a Glocalizing World Coalition Theory Network</td>
<td></td>
</tr>
<tr>
<td>PRIV 20.2003</td>
<td>Giacomo CALZOLARI and Alessandro PAVAN (lx): Monopoly with Resale</td>
<td></td>
</tr>
<tr>
<td>PRIV 22.2003</td>
<td>Marco LiCalzi and Alessandro PAVAN (lx): Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions</td>
<td></td>
</tr>
<tr>
<td>PRIV 23.2003</td>
<td>David ETTINGER (lx): Bidding among Friends and Enemies</td>
<td></td>
</tr>
<tr>
<td>PRIV 24.2003</td>
<td>Hannu VARTIAINEN (lx): Auction Design without Commitment</td>
<td></td>
</tr>
<tr>
<td>PRIV 26.2003</td>
<td>Christine A. PARLOUR and Uday RAJAN (lx): Rationing in IPOs</td>
<td></td>
</tr>
<tr>
<td>PRIV 27.2003</td>
<td>Kjell G. NYBORG and Ilya A. STREBULAEV (lx): Multiple Unit Auctions and Short Squeezes</td>
<td></td>
</tr>
<tr>
<td>PRIV 28.2003</td>
<td>Anders LUNANDER and Jan-Eric NILSSON (lx): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts</td>
<td></td>
</tr>
<tr>
<td>ETA 31.2003</td>
<td>Michael FINUS and Bianca RUNDHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games</td>
<td></td>
</tr>
<tr>
<td>KNOW 32.2003</td>
<td>Michele MORETTI: Competition and Irreversible Investments under Uncertainty</td>
<td></td>
</tr>
<tr>
<td>PRIV 33.2003</td>
<td>Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?</td>
<td></td>
</tr>
<tr>
<td>KNOW 34.2003</td>
<td>Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Treatment Effect Analysis</td>
<td></td>
</tr>
<tr>
<td>ETA 35.2003</td>
<td>Alessandra DEL BOCA, Marzio GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation</td>
<td></td>
</tr>
</tbody>
</table>
GG 36.2003 Matthieu GLACHANT: Voluntary Agreements under Endogenous Legislative Threats
PRIV 37.2003 Narjess BOUBAKRI, Jean-Claude COSSET and Omran GUEDHAMI: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection
CLIM 38.2003 Rolf GOLOMBEK and Michael HOEL: Climate Policy under Technology Spillovers
KNOW 39.2003 Slim BEN YOUSSEF: Transboundary Pollution, R&D Spillovers and International Trade
CTN 40.2003 Carlo CARRARO and Carmen MARCHIORI: Endogenous Strategic Issue Linkage in International Negotiations
KNOW 42.2003 Tino GOESCHL and Timothy SWANSON: On Biology and Technology: The Economics of Managing Biotechnologies
CLIM 44.2003 Katrin MILLOCK and Céline NAUGES: The French Tax on Air Pollution: Some Preliminary Results on its Effectiveness
PRIV 45.2003 Bernardo BORTOLOTTI and Paolo PINOTTI: The Political Economy of Privatization
ETA 47.2003 Jens HORBACH: Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany
CLIM 48.2003 Lori SNYDER, Nolan MILLER and Robert STAVINS: The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing
CTN 50.2003 László A. KOCZY and Luc LAUWERS (lxii): The Minimal Dominant Set is a Non-Empty Core-Extension
CTN 51.2003 Matthew O. JACKSON (lxii): Allocation Rules for Network Games
CTN 52.2003 Ana MAULEON and Vincent VANNETELBOSCH (lxii): Farsightedness and Cautiousness in Coalition Formation
CTN 54.2003 Matthew HAAG and Roger LAGUNOFF (lxii): On the Size and Structure of Group Cooperation
CTN 55.2003 Taiji FURUSAWA and Hideo KONISHI (lxii): Free Trade Networks
CTN 56.2003 Halis Murat YILDIZ (lxii): National Versus International Mergers and Trade Liberalization
CTN 57.2003 Santiago RUBIO and Alistair ULPH (lxii): An Infinite-Horizon Model of Dynamic Membership of International Environmental Agreements
KNOW 58.2003 Carole MAIGNAN, Dino PINELLI and Gianmarco I.P. OTTAVIANO: ICT, Clusters and Regional Cohesion: A Summary of Theoretical and Empirical Research
KNOW 59.2003 Giorgio BELLETTINI and Gianmarco I.P. OTTAVIANO: Special Interests and Technological Change
ETA 60.2003 Ronnie SCHÖB: The Double Dividend Hypothesis of Environmental Taxes: A Survey
CLIM 61.2003 Michael FINUS, Ekko van IERLAND and Robert DELLINK: Stability of Climate Coalitions in a Cartel Formation Game
SIEV 63.2003 Alberto PETRUCCI: Taxing Land Rent in an Open Economy
CLIM 64.2003 Joseph E. ALDY, Scott BARRETT and Robert N. STAVINS: Thirteen Plus One: A Comparison of Global Climate Policy Architectures
SIEV 65.2003 Edi DEFRANCESCO: The Beginning of Organic Fish Farming in Italy
SIEV 66.2003 Klaus CONRAD: Price Competition and Product Differentiation when Consumers Care for the Environment
SIEV 67.2003 Paolo A.L.D. NUNES, Luca ROSSETTO, Arianne DE BLAEIJ: Revealed Preferences to Estimate Environmental Benefits
CLIM 68.2003 ZhongXiang ZHANG: Open Trade with the U.S. Without Compromising Canada’s Ability to Comply with its Kyoto Target
KNOW 69.2003 David FRANTZ (lxii): Lorenzo Market between Diversity and Mutation
KNOW 70.2003 Ercole SORI (lxii): Mapping Diversity in Social History
KNOW 71.2003 Liljana DERU SIMIC (lxii): What is Specific about Art/Cultural Projects?
KNOW 72.2003 Natalya V. TARANOVA (lxii): The Role of the City in Fostering Intergroup Communication in a Multicultural Environment: Saint-Petersburg’s Case
KNOW 73.2003 Kristine CRANE (lxii): The City as an Arena for the Expression of Multiple Identities in the Age of Globalisation and Migration
KNOW 74.2003 Kazuma MATOBA (lxii): Glocal Dialogue- Transformation through Transcultural Communication
KNOW 75.2003 Catarina REIS OLIVEIRA (lxii): Immigrants’ Entrepreneurial Opportunities: The Case of the Chinese in Portugal
KNOW 76.2003 Sandra WALLMAN (lxii): The Diversity of Diversity - towards a typology of urban systems
KNOW 77.2003 Richard PEARCE (lxii): A Biologist’s View of Individual Cultural Identity for the Study of Cities
KNOW 78.2003 Vincent MERK (lxii): Communication Across Cultures: from Cultural Awareness to Reconciliation of the Dilemmas
KNOW 79.2003 Giorgio BELLETTINI, Carlotta BERTI CERONI and Gianmarco I.P. OTTAVIANO: Child Labor and Resistance to Change
ETA 80.2003 Michele MORETTO, Paolo M. PANTEGHINI and Carlo SCARPA: Investment Size and Firm’s Value under Profit Sharing Regulation
Alessandro LANZA, Matteo MANERA and Massimo GIOVANNINI: Oil and Product Dynamics in International Petroleum Markets
Y. Hossein FARZIN and Jinhua ZHAO: Pollution Abatement Investment When Firms Lobby Against Environmental Regulation
Giuseppe DI VITA: Is the Discount Rate Relevant in Explaining the Environmental Kuznets Curve?
Reyer GERLAGH and Wietze LISE: Induced Technological Change Under Carbon Taxes
Rinaldo BRAU, Alessandro LANZA and Francesco PIGLIARU: How Fast are the Tourism Countries Growing? The cross-country evidence
Elena BELLINI, Gianmarco I.P. OTTAVIANO and Dino PINELLI: The ICT Revolution: opportunities and risks for the Mezzogiorno
Lucas BRETSCGHER and Sjak SMULDERS: Sustainability and Substitution of Exhaustible Natural Resources. How resource prices affect long-term R&D investments
Johan EYCKMANS and Michael FINUS: New Roads to International Environmental Agreements: The Case of Global Warming
Marzio GALEOTTI: Economic Development and Environmental Protection
Marzio GALEOTTI: Environment and Economic Growth: Is Technical Change the Key to Decoupling?
Marzio GALEOTTI and Barbara BUCHNER: Climate Policy and Economic Growth in Developing Countries
A. MARKANDYA, A. GOLUB and E. STRUKOVA: The Influence of Climate Change Considerations on Energy Policy: The Case of Russia
Andrea BELTRATTI: Socially Responsible Investment in General Equilibrium
Parkash CHANDER: The r-Core and Coalition Formation
Matteo MANERA and Angelo MARZULLO: Modelling the Load Curve of Aggregate Electricity Consumption Using Principal Components
Alessandro LANZA, Matteo MANERA, Margherita GRASSO and Massimo GIOVANNINI: Long-run Models of Oil Stock Prices
John CROWLEY, Marie-Cecile NAVES (lxiii): Anti-Racist Policies in France. From Ideological and Historical Schemes to Socio-Political Realities
Richard THOMPSON FORD (lxiii): Cultural Rights and Civic Virtue
Alaknanda PATEL (lxiii): Cultural Diversity and Conflict in Multicultural Cities
David MAY (lxiii): The Struggle of Becoming Established in a Deprived Inner-City Neighbourhood
Sébastien ARCAND, Danielle JUTEAU, Sirma BILGE, and Francine LEMIRE (lxiii): Municipal Reform on the Island of Montreal: Tensions Between Two Majority Groups in a Multicultural City
Barbara BUCHNER and Carlo CARRARO: China and the Evolution of the Present Climate Regime
Barbara BUCHNER and Carlo CARRARO: Emissions Trading Regimes and Incentives to Participate in International Climate Agreements
Amit MARKANDYA and Dirk T.G. RÜBRELKE: Ancillary Benefits of Climate Policy
Management Challenges for Multiple-Species Boreal Forests
Threshold Effects in Coral Reef Fisheries
Estimating the Value of Oil Capital in a Small Open Economy: The Venezuela’s Example
Kenneth ARROW, Partha DASGUPTA and Karl-Göran MÄLER (lxiv): Estimating the Value of Oil Capital in a Small Open Economy: The Venezuela’s Example
Endogenous Minimum Participation in
Ancillary Benefits of Climate Policy
Instabilities and Robust Control in Fisheries
Conservation and Optimal Use of Rangelands
Globalisation, Population and Ecology
Endogenous Minimum Participation in
International Environmental Treaties
Guillaume HAERINGER and Myrna WOODERS: Decentralized Job Matching
Hideo KONISHI and M. Utku UNVER: Credible Group Stability in Multi-Partner Matching Problems
Somdeb LAHIRI: Stable Matchings for the Room-Mates Problem
Somdeb LAHIRI: Stable Matchings for a Generalized Marriage Problem
Marita LAUKKANEN and Sonia OREFFICE: Endogenous Minimum Participation in International Environmental Treaties
Guillaume HAERINGER: Decentralized Job Matching
Hier KONISHI and M. Utku UNVER: Credible Group Stability in Multi-Partner Matching Problems
Somdeb LAHIRI: Stable Matchings for the Room-Mates Problem
Somdeb LAHIRI: Stable Matchings for a Generalized Marriage Problem
Marita LAUKKANEN: Transboundary Fisheries Management under Implementation Uncertainty
Edward CARTWRIGHT and Myrna WOODERS: Social Conformity and Bounded Rationality in Arbitrary Games with Incomplete Information: Some First Results
Gianluigi VERNASCA: Dynamic Price Competition with Price Adjustment Costs and Product Differentiation
Myrna WOODERS, Edward CARTWRIGHT and Reinhard SELTEN: Social Conformity in Games with Many Players
Edward CARTWRIGHT and Myrna WOODERS: On Equilibrium in Pure Strategies in Games with Many Players
Edward CARTWRIGHT and Myrna WOODERS: Conformity and Bounded Rationality in Games with Many Players
Carlo CARRARO, Alessandro LANZA and Valeria PAPPONETTI: One Thousand Working Papers
NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and \(\text{So}_2 \) Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (Ixxv): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPER (Ixxv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPER (Ixxv): Primary Market Design: Direct Mechanisms and Markets

PRA 11.2004 Bjarno BRENDSTRUP and Harry J. PAARSCH (Ixxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (Ixxv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSSEN (Ixxv): Auctions as Coordination Devices

PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (Ixxv): All-Pay Auctions with Weakly Risk-Averse Buyers

PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (Ixxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination

PRA 16.2004 Marta STRYSZOWSKA (Ixxv): Late and Multiple Bidding in Competing Second Price Internet Auctions

CCMP 17.2004 Slim Ben YOUSSEF: R&D in Cleaner Technology and International Trade

NRM 18.2004 Angelo ANTOCI, Simone BORGHESI and Paolo RUSSU (Ixxvi): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics

SIEV 19.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice

NRM 21.2004 Jacqueline M. HAMILTON (Ixxvii): Climate and the Destination Choice of German Tourists

NRM 23.2004 Pius ODUNGA and Henk FOLMER (Ixxvii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya

This paper was presented at the ENGIME Workshop on “Mapping Diversity”, Leuven, May 16-17, 2002.
This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications”, organised by the Fondazione Eni Enrico Mattei, Milan, September 26-28, 2002.
This paper was presented at the Eighth Meeting of the Coalition Theory Network organised by the GREQAM, Aix-en-Provence, France, January 24-25, 2003.
This paper was presented at the ENGIME Workshop on “Communication across Cultures in Multicultural Cities”, The Hague, November 7-8, 2002.
This paper was presented at the ENGIME Workshop on “Social dynamics and conflicts in multicultural cities”, Milan, March 20-21, 2003.
This paper was presented at the International Conference on “Theoretical Topics in Ecological Economics”, organised by the Abdus Salam International Centre for Theoretical Physics - ICTP, the Beijer International Institute of Ecological Economics, and Fondazione Eni Enrico Mattei – FEEM Trieste, February 10-21, 2003.
This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications” organised by Fondazione Eni Enrico Mattei and sponsored by the EU, Milan, September 25-27, 2003.
This paper has been presented at the 4th BioEcon Workshop on “Economic Analysis of Policies for Biodiversity Conservation” organised on behalf of the BIOECON Network by Fondazione Eni Enrico Mattei, Venice International University (VIU) and University College London (UCL), Venice, August 28-29, 2003.
This paper has been presented at the international conference on “Tourism and Sustainable Economic Development – Macro and Micro Economic Issues” jointly organised by CRENoS (Università di Cagliari e Sassari, Italy) and Fondazione Eni Enrico Mattei, and supported by the World Bank, Sardinia, September 19-20, 2003.
2003 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>