Dynamic Price Competition with Price Adjustment Costs and Product Differentiation

Gianluigi Vernasca

NOTA DI LAVORO 120.2003

DECEMBER 2003
CTN – Coalition Theory Network

Gianluigi Vernasca, Department of Economics, University of Warwick

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://papers.ssrn.com/abstract_id=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Dynamic Price Competition with Price Adjustment Costs and Product Differentiation

Summary

We study a discrete time dynamic game of price competition with spatially differentiated products and price adjustment costs. We characterise the Markov perfect and the open-loop equilibrium of our game. We find that in the steady state Markov perfect equilibrium, given the presence of adjustment costs, equilibrium prices are always higher than prices at the repeated static Nash solution, even though, adjustment costs are not paid in steady state. This is due to intertemporal strategic complementarity in the strategies of the firms and from the fact that the cost of adjusting prices adds credibility to high price equilibrium strategies. On the other hand, the stationary open-loop equilibrium coincides always with the static solution. Furthermore, in contrast to continuous time games, we show that the stationary Markov perfect equilibrium converges to the static Nash equilibrium when adjustment costs tend to zero. Moreover, we obtain the same convergence result when adjustment costs tend to infinity.

Keywords: Price adjustment costs, Difference game, Markov perfect equilibrium, Open-loop equilibrium

JEL: C72, C73, L13

I would like to thank Myrna Wooders for her valuable comments and suggestions. I wish also to thank Paolo Bertoletti, Jonathan Cave, Javier Fronti, Augusto Schianchi for useful conversations, and the participants of seminars at the University of Warwick, the University of Pavia and at the EARIE 2003 Conference in Helsinki. Any mistakes remain my own.

Address for correspondence:

Gianluigi Vernasca
Department of Economics
University of Warwick
Coventry CV4 7AL
United Kingdom
Phone: + 44 (0) 247652 23479
Fax: + 44 (0) 247652 3032
E-mail: G.Vernasca@warwick.ac.uk
1 Introduction

In this paper we develop a duopolistic dynamic game of price competition, in which products are horizontally differentiated and firms face adjustment costs every time they change their prices. Imposing adjustment costs creates a time dependent structure in our dynamic game and allows us to develop our model as a discrete time differential game, or difference game.\(^1\) The main objective of our analysis is to study the effects of the presence of such adjustment costs on the strategic behaviour of firms under different assumptions on the ability of the firms to commit to price paths in advance. In particular, we focus on two different classes of strategies that have been widely used in the dynamic competition models, Markov and open-loop strategies.\(^2\) Markov strategies depend only on payoff relevant variables that condense the direct effect of the past on the current payoff.\(^3\) The use of Markov strategies restrict equilibrium evaluation solely to subgame perfect equilibria, which have the desirable property of excluding non-credible threats. In contrast, open-loop strategies are functions of the initial state of the game and of the calendar time, and typically, are not subgame perfect. Thus, Markov and open-loop strategies correspond to extreme assumptions about player’s capacities to make commitments about their future actions. Under the open-loop information pattern, the period of commitment is the same as the planning horizon while under Markovian strategies no commitment is possible.

The role of price stickiness has been analysed in many theoretical models of business cycles.\(^4\) Very little attention, however, has been paid to strategic incentives associated with price adjustment costs in dynamic oligopoly models. There are sev-

\(^1\) Differential games are dynamic games in continuous time, in which the different stages of the game are linked through a transition equation that describes the evolution of the state of the model. Furthermore, the transition equation depends on the strategic behaviour of the players. These kind of games are also called “state-space” games. Difference games are the discrete time counterpart of differential games. See Basar and Olsder (1995) for a detailed analysis. See also De Zeeuw and Van Der Ploeg (1991) for a survey on the use of difference games in economics.

\(^2\) See Fudenberg and Tirole (1991) Ch. 13, for an introduction to Markov and open-loop equilibria and on their use in dynamic games. Amir (2001) provides an extensive survey on the use of these strategies in dynamic economic models.

\(^3\) There is no generally accepted name in difference/differential games theory for such strategies and for the related equilibrium. Basar and Oldser (1995) use the term “Feedback Nash Equilibrium” while Papavassilopoulos and Cruz (1979) use the term “Closed-Loop Memoryless Equilibrium”. However, after Maskin and Tirole (1988), the terms Markov strategies and Markov Perfect equilibrium has become standard in economic literature.

\(^4\) Two different possibilities to model price adjustment costs have been considered in the literature on business cycles. First, there is a fixed cost per price change due to the physical cost of changing posted prices. These fixed costs are called ”menu costs”. See for example, Akerlof and Yellen (1985) and Mankiw (1985) among the others. Second, there are costs that capture the negative effect of price changes, particularly price increases on the reputation of firms. These costs are quadratic because reputation of firms is presumably more affected by large price changes than by small price changes. See for example, Rotemberg (1982). In our model, we follow the latter approach.
eral examples of differential games of Cournot competition with sticky prices, like Fershtman and Kamien (1987), Piga (2000) and Cellini and Lambertini (2001.a). The main result of these authors is that the subgame perfect equilibrium quantity is always below the static Cournot equilibrium, even if prices adjust instantaneously. This implies that the presence of price rigidity creates a more competitive market outcome. However, in those models, price rigidity is not modelled using adjustment costs, but instead refers to stickiness in the general price level. Thus those models deal only with one state variable, that is, the price level given by the inverse demand function, while in our model we have two state variables, the two prices of both firms. This fact adds considerably to the technical complexity of our problem. The main reason is that dynamic programming suffers the “curse of dimensionality”, that is the tendency of the state space, and thus computational difficulties, to grow exponentially with the number of state variables. As far as adjustment costs are concerned, most of the literature on dynamic competition has instead focused on adjustment costs in quantities. However, the same result described above still hold when these adjustment costs are considered. For example, Reynolds (1989, 1991) and Driskill and McCafferty (1989) study a dynamic duopoly with homogenous products and quadratic capacity adjustment costs in continuous time setting. The steady state output in the subgame perfect equilibrium is found to be larger than in the Cournot static game without adjustment costs. The main reason is the presence of intertemporal strategic substitutability in the strategic behaviour of the firms. A larger output of a firm today leads the firm being more aggressive tomorrow. The same result seems to hold independently on the kind of competition that is considered, as showed by Jun and Vives (2001) in their model of Bertrand competition with output adjustment costs.5

All the literature described so far shares the common feature of a continuous time setting. An interesting limit result that is common to models of dynamic oligopoly in continuous time is that, as adjustment costs or price stickiness tend to zero, the subgame perfect equilibrium approaches a limit that is different from the Nash equilibrium of the corresponding static game. Discrete time models of dynamic competition have been less developed, since it appears that the discrete time formulation is less tractable than the continuous time formulation. Discrete time models of dynamic competition with adjustment costs have been analysed in Maskin and Tirole (1987), Karp and Perloff (1993) and Lapham and Ware (1994) among others. In the first case Cournot competition with quantities adjustment costs is considered, but the equilibrium has been characterised only for the case in which adjustment costs approach infinity. More interesting for our purposes is the model of Lapham and Ware (1994). They show that the taxonomy of strategic incentives developed by Fudenberg and Tirole (1984) in a two-stage game can be extended to infinite horizon games with Markov strategies. However, their analysis is limited to the case in which

5This seems to provide a counterpoint to the idea of Kreps and Scheinkman (1983) that quantity precommitment and price competition yields Cournot outcomes.
adjustment costs are zero in equilibrium. Nevertheless, they find a limit result that
contradicts the one of continuous time models. When adjustment costs tend to zero,
their steady-state Markov perfect equilibrium converges to the Nash equilibrium of
the static game.

In our model we characterize the Markov perfect equilibrium for different values
of adjustment costs and product differentiation. Given the mathematical complexity
involved in the analysis, some qualitative results are derived with numerical simu-
lation. We find that the prices at the steady-state Markov perfect equilibrium are
always higher than the prices at the static Nash equilibrium of the corresponding
static game but they coincide in two limit cases – when adjustment costs tend to
zero and when they tend to infinity. The economic force behind this result is the
presence of intertemporal strategic complementarity: a firm, may strategically raise
price today, and induce high prices from its rival tomorrow. The presence of ad-
justment costs enables firms to increase prices today and signal that they plan to
keep prices higher next period. However, the magnitude of this strategic comple-
mentarity depends on the level of product differentiation. As products become less
differentiated, higher equilibrium prices are sustainable only if adjustment costs are
sufficiently high. Strategic complementarity is absent in open-loop strategies and the
steady-state open-loop equilibrium is in correspondence one-to-one with the static
Nash equilibrium. Our analysis is conducted under the assumptions that demand
functions are linear function of prices and that profit functions and adjustment costs
are quadratic and symmetric between firms. With this structure our model is a linear
quadratic game. This kind of game is analytically convenient because the equilibrium
strategies are known to be linear in the state variables of the model. Moreover, in
some cases linear quadratic models or linear quadratic approximations of non-linear
games provide a good representation of oligopolistic behaviour especially around a
deterministic steady state.

The paper is organized as follows. In section 2 we describe the model. Section
3 presents the full computation of the Markov perfect equilibrium. In Section 4 we
compare the Markov perfect equilibrium with the open-loop equilibrium and then we
consider some limit results for these two equilibria. Section 5 concludes.

2 The Model

We start with the derivation of the demand functions. Consider a simple model
of spatial competition a’ la Hotelling in which there is a continuum of consumers
uniformly distributed in the unit interval [0, 1], with the position of a firm representing
its ideal product. Consumers incur exogenous ‘transportation costs’ for having to
consume one of the available brands instead of their ideal brand. This cost has the
form of ($1/2s$), where $s \in (0, \infty]$ provides a measure of substitutability between both
products. In particular, when the transportation cost tends to zero, products become close substitutes. In contrast, if \(\frac{1}{2s} \to \infty \), a consumer prefers to choose the brand closest to its ideal point, independent of price. Thus, we can think at \(s \) as an indicator of market power of firms. Indeed, when products are highly differentiated (\(s \) is small), firms can increase prices without significantly affecting their own demand.

The utility function at time \(t \) of the consumer located at point \(\alpha \) in the unit segment, for product \(i \), is a linear function \(\bar{U}_t(v, \alpha_i, s, p_{it}) = v - \frac{\alpha_i - F_i}{2s} - p_{it} \). The term \(v \) represents the utility that a consumer derives for consuming her ideal product, that is assumed to be time invariant. Given our specification, the term \(v \) represents also an upper boundary level for the price set. If prices plus the exogenous transportation costs are greater than \(v \), then no products will be bought by the consumers. In the following we shall assume that \(v \) is sufficiently high so that this does not occur. Finally, \(F_i \in [0, 1] \) is the location of firm \(i \), and the term \(-p_{it}\) reflects the negative impact of price of product \(i \) on the utility of consumers. Following standard procedures, we solve for the demand functions of a consumer \(\alpha \) who is at the point of indifference. The linear demand function faced by firm \(i \) is simply

\[
y_{it}(p_{it}, p_{jt}) = \frac{1}{2} + s(p_{jt} - p_{it})
\]

with \(i, j = 0, 1 \) and \(i \neq j \). If firms set the same price, both share equally the market. In our duopoly model the two firms are symmetric and they are located at each end of the unit interval. There is no uncertainty. Both firms face fixed quadratic adjustment costs: \(\frac{1}{2} \lambda (p_{it} - p_{it-1})^2 \), where \(\lambda \geq 0 \) is a measure of the cost of adjusting the price level. This formulation implies that adjustment costs are minimized when no adjustment takes place. The per-period profit function for firm \(i \) is the following concave function in its own prices:

\[
\pi_{it}(p_{it}, p_{jt}; p_{it-1}) = p_{it}y_{it}(p_{it}, p_{jt}) - \frac{1}{2} \lambda (p_{it} - p_{it-1})^2
\]

At time \(t \), firm \(i \) decides by how much to change its price \(\Delta_{it} = (p_{it} - p_{it-1}) \), or equivalently to set the new price level at time \(t \). Thus, using the terminology of the optimal control theory, prices at time \(t \) are the control variables for the firms, while prices at time \(t - 1 \) are the state variables.

Firm \(i \) maximizes the following discounted stream of future profits over an infinite horizon:

\(^6\)The formulation of the consumer problem is standard and follows the lines as in Doganouglu (1999). Differently from his analysis, we do not incorporate possible persistent effects in customer tastes.

\(^7\)The fact that the set of prices is bounded assures that instantaneous profit functions are bounded as well, which is a sufficient condition for dynamic programming to be applicable. See Maskin and Tirole (1988. b).

\(^8\)We use convex adjustment costs as in Rotemberg (1982). Quadratic price adjustment costs have been used also by Lapham and Ware (1994) and Jun and Vives (2001) because of their analytical tractability.
\[\Pi_i = \sum_{t=1}^{\infty} \beta^t \pi_{it}(p_{it}, p_{jt}, p_{it-1}) \]

where \(\beta \in (0, 1) \) is the time invariant discount factor.\(^9\)

With this structure, our model is a linear quadratic game. This kind of games is analytically convenient because the equilibrium strategies are known to be linear in the state variables.\(^10\)

In our model, we mainly focus on strategic behaviour of the firms based on pure Markov strategies, that is, Markov strategies that are deterministic, in which the past influences current play only through its effect on the current state variables that summarise the direct effect of the past on the current environment. Optimal Markovian strategies have the property that, whatever the initial state and time are, all remaining decisions from that particular initial state and particular time onwards must also constitute optimal strategies. This means that Markov strategies are time-consistent. An equilibrium in Markov strategies is a subgame perfect equilibrium and it is called Markov perfect equilibrium\(^11\).

Following Maskin and Tirole (1988), we define a Markov perfect equilibrium using the game theoretic analogue of dynamic programming\(^12\):

Definition 1. Let \(V_{it}(p_{it-1}, p_{jt-1}) \), with \(i, j = 1, 2 \) and \(i \neq j \), be the value of the game starting at period \(t \) where both players play their optimal strategy \(\tilde{\pi}_{it}(p_{it-1}, p_{jt-1}) \) for \(i, j = 1, 2 \) and \(i \neq j \). This pair of strategies constitute a Markov Perfect Equilibrium (MPE) if and only if they solve the following dynamic programming problem:

\[V_{it}(p_{it-1}, p_{jt-1}) = \max_{\pi_{it}} [\pi_{it}(p_{it}, p_{jt}, p_{it-1})] + \beta V_{it+1}(p_{it}, p_{jt}) \]

The pair of equations in 4) are the Bellman’s equations of our problem that have to hold in equilibrium. Differentiating the right-hand side of the Bellman’s equations 4) with respect the control variable of each firm, we obtain the following first order conditions:

\(^9\)The presence of a discount factor less than one together with per-period payoff functions uniformly bounded assures that the objective functions faced by players are continuous at infinity. Under this condition a Markov perfect equilibrium, at least in mixed strategies, always exist in a game with infinite horizon. See Fudenberg and Tirole p. 515.

\(^10\)For a detailed analysis of this point, see Papavassilopoulos, Medanic and Cruz (1979)

\(^11\)The concept of subgame perfection is much stronger than time consistency, since it requires that the property of subgame perfection hold at every subgame, not just those along the equilibrium path. On the other hand, dynamic (or "time") consistency would require that along the equilibrium path the continuation of the Nash equilibrium strategies remains a Nash equilibrium. For a discussion on the difference between subgame perfection and time consistency see Reinganum and Stokey (1985).

\(^12\)By definition, Markov strategies are feedback rules. Furthermore, it is well known that dynamic programming produces feedback equilibria by its very construction, thus, it represents a natural tool to analyse Markov perfect equilibria.
Given the linear quadratic nature, the first order conditions of each player completely characterize the Markov perfect equilibrium. To solve this system of equations, we need to guess a functional form for the unknown value functions $V_i(\cdot)$. However, we know that equilibrium strategies in linear quadratic games are linear functions of the state variables and value functions are quadratic. Then, we guess the following functional form for the value functions:

$$V_{it+1}(p_{it}, p_{jt}) = a_i + b_ip_{it} + c_ip_{jt} + \frac{d_i}{2}p_{it}^2 + e_ip_{it}p_{jt} + f_ip_{jt}^2$$ for $i, j = 1, 2$ and $i \neq j$

where the parameters a_i, b_i, c_i, d_i, e_i and f_i are unknown parameters. Equation 6) hold for every t.

We are not interested in solving for all these parameters since we are analysing only the derivatives of the value functions that are given by:

$$\frac{\partial V_{it+1}(p_{it}, p_{jt})}{\partial p_{it}} = b_i + d_ip_{it} + e_ip_{jt}$$ for $i, j = 1, 2$ and $i \neq j$

$$\frac{\partial V_{it+1}(p_{it}, p_{jt})}{\partial p_{jt}} = c_i + e_ip_{it} + f_ip_{jt}$$ for $i, j = 1, 2$ and $i \neq j$

where the coefficients b_i, c_i, d_i, e_i and f_i are the parameters of interest that are to be determined by the method of undetermined coefficients (See Appendix). A solution for those coefficients, if it exists, will be a function of the structural parameters of the model given by s, β and λ. Substituting the relevant derivatives of the payoff functions and equations 7.1) and 7.2) into 5), we can obtain a solution for the current prices (p_{it}, p_{jt}) as a linear function of the state variables (p_{it-1}, p_{jt-1}). This solution is given by the following pair of linear Markov strategies:

$$\tilde{p}_{it} = F_i + R_ip_{jt-1} + M_ip_{it-1}$$ for $i, j = 1, 2$ and $i \neq j$

where the coefficients F_i, R_i and M_i are functions directly and indirectly, through the unknown parameters of the derivatives given by 7.1) and 7.2), of the structural parameters of the model $(s, \beta$ and $\lambda)$. (See Appendix).

We can substitute optimal strategies given by 8), after taking into account for symmetry, into the Bellman’s equations 4), and then differentiating 4) for the state variables (p_{jt-1}, p_{it-1}). Using the first order conditions 5) to apply the Envelope theorem, we obtain the following system of four Euler equations:

13Since the mathematical analysis involved is standard, we follow the same procedure as in Lapham and Ware (1994).
\[
\frac{\partial V_{it}}{\partial p_{jt-1}} = \frac{\partial \pi^*_t}{\partial p_{jt-1}} + \left(\frac{\partial \pi^*_t}{\partial p_{jt}} + \beta \frac{\partial V_{it+1}}{\partial p_{jt}} \right) \frac{\partial \tilde{p}_{jt}}{\partial p_{jt-1}} \quad \text{for } i, j = 1, 2 \text{ and } i \neq j \tag{9.1}
\]

\[
\frac{\partial V_{it}}{\partial p_{jt-1}} = \frac{\partial \pi^*_t}{\partial p_{jt-1}} + \left(\frac{\partial \pi^*_t}{\partial p_{jt}} + \beta \frac{\partial V_{it+1}}{\partial p_{jt}} \right) \frac{\partial \tilde{p}_{jt}}{\partial p_{jt-1}} \quad \text{for } i, j = 1, 2 \text{ and } i \neq j \tag{9.2}
\]

where the profit functions are given by \(\pi^*_t(\tilde{p}_{jt}(p_{it-1}, p_{jt-1}), \tilde{p}_{jt}(p_{it-1}, p_{jt-1}, p_{it-1})) \).

Using equations 7.1) and 7.2) in the above Euler equations, and using the method of undetermined coefficients, we obtain ten non-linear equations in ten unknowns parameters \(a_i, b_i, c_i, d_i, e_i \) and \(f_i \) for \(i = 1, 2 \) (system A3) in the Appendix). If a solution for these parameters exists, then the linear Markov perfect equilibrium given by 8) exists as well. Given the fact that we have to deal with ten non-linear equations, to simplify the mathematical tractability of the model, we restrict our analysis to a symmetric Markov perfect equilibrium.\(^{14}\) This implies that from equations 7.1) and 7.2) we have \(b_1 = b_2 = b, c_1 = c_2 = c, d_1 = d_2 = d, e_1 = e_2 = e \) and \(f_1 = f_2 = f \).

Thus, Markov strategies are also symmetric, that is, \(F_1 = F_2 = F, R_1 = R_2 = R \) and \(M_1 = M_2 = M \). Suppose that a solution for the unknown parameters exists, and denote this solution with \(b^*, c^*, d^*, e^* \) and \(f^* \). Using symmetry in the Markov strategies, and using the definitions given in the Appendix for the coefficients \(F, R \) and \(M \), we can solve for the symmetric steady state level of the system of first order difference equations given by 8):

\[
\bar{p}_{i}^{\text{mpe}} = \frac{1}{2} \frac{1 + 2\beta b^*}{s - \beta(d^* + e^*)} \quad \text{for } i = 1, 2 \tag{10}
\]

where we assume \(s \neq \beta(d^* + e^*) \). The equilibrium in 10) is the steady-state linear Markov perfect equilibrium of our model. Note that when \(s \) tends to infinity the equilibrium prices tend to zero. In the next section we will show how to derive a solution for the unknown parameters \(b^*, c^*, d^*, e^* \) and \(f^* \). Then, we will consider in details the properties that the equilibrium given by 10) exhibits.

3 Computation and Properties of the Markov Perfect Equilibrium

In this section we compute more in detail the linear Markov perfect equilibrium of our model. We start with the derivation of the Nash equilibrium of the static game

\(^{14}\)Strategic symmetric behaviour by firms is a standard assumption in the literature on dynamic competition. See for example, Jun and Vives (2001), Driskill and McAfee (1989) and Doganouglu (1999) among the others. This assumption can be seen as a natural consequence of the fact that firms face a symmetric dynamic problem. However, we are aware that the presence of ten non-linear equations implies that many equilibria, symmetric and not, can arise from our model.
associated with our model without adjustment costs. This particular equilibrium represents a useful benchmark that can be compared with the Markov perfect and the open-loop equilibria of the model and it will be useful when will study the convergence properties of such equilibria when adjustment costs tend to zero. Assuming $\lambda = 0$, the symmetric static equilibrium of the repeated game without adjustment costs, denoted by p^*, is given by:

$$\bar{p}^* = \frac{1}{2s}$$

(11)

As we might expect, without adjustment costs, prices in equilibrium are functions of the measure of substitutability between the two goods. As for the Markov perfect equilibrium, when goods are perfectly homogeneous (s tends to infinity) static equilibrium prices are zero as in the classical Bertrand model.

In order to derive the properties of the Markov perfect equilibrium given by 10) we need to find a solution for the parameters of the value functions b^*, c^*, d^*, e^* and f^*. Despite the tractability of linear quadratic games, given the analytical difficulty to deal with a highly non-linear system of implicit functions, most of the results that we are going to present are obtained using numerical methods.\(^{16}\) Numerical techniques are often used in dynamic games in state-space form, as in Judd (1990) or Karp and Perloff (1993). The presence of nonlinearity implies that we must expect many solutions for the unknown parameters, and thus, multiple Markov perfect equilibria.\(^{17}\) In order to reduce this multiplicity, we concentrate our analysis to symmetric Markov perfect equilibria that are asymptotically stable as in Driskill and McCafferty (1989) and Jun and Vives (2001). An asymptotically stable equilibrium is one where the equilibrium prices converge to a finite stationary level for every feasible initial condition.\(^{18}\) The symmetric optimal Markov strategies are given by:

$$\tilde{p}_{it} = F + Rp_{jt-1} + Mp_{it-1} \quad \text{for } i, j = 1, 2 \text{ and } i \neq j$$

(12)

From these strategies we can derive the conditions for stability of the symmetric linear Markov perfect equilibrium:

Proposition 1 Assuming in 12) that $(2s + \lambda - \beta d) \neq (s + \beta e)$, then, this pair of strategies defines a stable equilibrium, if and only if, the eigenvalues of the symmetric

\(^{15}\)This particular equilibrium is important because it represents a subgame perfect equilibrium of the infinite repeated game without adjustment costs associated with our model.

\(^{16}\)In particular, we use the Newton’s method for nonlinear systems. For an introduction to the Newton’s method, see Cheney and Kincaid (1999), Ch.3.

\(^{17}\)Unfortunately, in literature, there are no general results on the uniqueness of Markov perfect equilibria in dynamic games. An interesting exception is Lokwood (1996) that provides sufficient conditions for uniqueness of Markov perfect equilibria in affine-quadratic differential games with one state variable.

\(^{18}\)Given the lack of a transversality condition in the dynamic problem stated in Definition 1, we focus on asymptotically stable equilibria also because in this case we know that these equilibria will fulfill the tranversality condition even implicitly.
matrix $A = \begin{bmatrix} M & R \\ R & M \end{bmatrix}$ are in module less than one. This implies that conditions for
the stability of the system given by (12) are: $(d - e) < \frac{3s}{\beta}$ and $(d + e) < \frac{s}{\beta}$.

The result in Proposition 1 is derived from the theory of dynamic systems in
discrete time.\(^{19}\) The condition that $(2s + \lambda - \beta d) \neq (s + \beta e)$ assures that the parameters
of the Markov strategies (12) are well defined (see Appendix). Thus, when we look
for a solution of the system (A3) defined in the Appendix, this solution should respect
the conditions in Proposition 1. Moreover, we consider only real solutions for the
unknown parameters, and we consider only solutions that are locally isolated, or
locally stable.\(^{20}\) In addition, we impose that at that solution, equilibrium prices
cannot be negative. Thus, we construct an asymptotically stable Markov perfect
equilibrium numerically, instead of analytically as in Drisckill and McCafferty (1989)

We now focus on the properties of our Markov perfect equilibrium when adjust-
ment costs are positive and finite. We solve the system (A3) in the Appendix for
given values of the transportation cost (s), the discount factor (β), and the measure
of adjustment costs (λ).\(^{21}\) Given the stability conditions stated above, we obtain a
unique solution for the parameters b, c, d, e and f and thus, a unique Markov perfect
equilibrium, for each set of values of the structural parameters of the model (s, β and
λ)\(^{22}\). Given the difficult economic interpretation for these parameters, a sample of
results is given in the Appendix. Here we report the implications of those solutions
for the coefficients of the symmetric Markov strategies F, M and R. We are interested
in particular on the coefficient R that represents the effect of one firm’s today choice
on the rival’s choice tomorrow.

Proposition 2 For a plausible range of the structural parameters of the model s, β
and λ, we have the following results at the stable solutions of the system (A3):

1) the coefficients of the Markov strategies are always positive;

2) R is first increasing and then decreasing in λ. The higher s the higher is the
 persistence of the increasing phase;

3) R is decreasing in s when adjustment costs become higher, R first increases and then decreases in s. The higher λ, the higher is the
 persistence of the increasing phase.

\(^{19}\)Drisckill and McCafferty (1989) and Jun and Vives (2001) construct an asymptotically stable
Markov equilibrium using similar conditions for differential equations, called Routh-Hurwitz condi-
tions. For the case of a 2×2 system of difference equations, these conditions imply that $|\det(A)| < 1$
and $|\det(A) + 1| < tr(A)$, where tr is the trace of matrix A.

\(^{20}\)In practice, we want that at one particular solution, if we perturb that solution, the system of
implicit functions (A3) must remain close to zero.

\(^{21}\)Most of our results are based on a value of β close to 1, a value that we take from the numerical

\(^{22}\)Drisckill and McCafferty (1989) and Jun and Vives (2001), using a similar framework as ours, have
shown that there is a unique linear Markov perfect equilibrium that satisfies asymptotic stability.
we have always $M > R$, however, the difference $(M - R)$ is decreasing in s;
5) the coefficient M is increasing in λ and decreasing in s;

The statements in Proposition 2 are summarised in the following table, in which we report a sample of the results of our numerical analysis made on system A3.

Table 1. Numerical values for the coefficients of Markov strategies.

<table>
<thead>
<tr>
<th>λ</th>
<th>F</th>
<th>M</th>
<th>R</th>
<th>F</th>
<th>M</th>
<th>R</th>
<th>F</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.924</td>
<td>0.104</td>
<td>0.044</td>
<td>0.480</td>
<td>0.057</td>
<td>0.0265</td>
<td>0.049</td>
<td>0.006</td>
<td>0.003</td>
</tr>
<tr>
<td>0.5</td>
<td>0.704</td>
<td>0.313</td>
<td>0.099</td>
<td>0.414</td>
<td>0.204</td>
<td>0.0757</td>
<td>0.049</td>
<td>0.031</td>
<td>0.015</td>
</tr>
<tr>
<td>0.8</td>
<td>0.567</td>
<td>0.401</td>
<td>0.111</td>
<td>0.374</td>
<td>0.275</td>
<td>0.0919</td>
<td>0.048</td>
<td>0.047</td>
<td>0.022</td>
</tr>
<tr>
<td>1</td>
<td>0.541</td>
<td>0.446</td>
<td>0.115</td>
<td>0.352</td>
<td>0.313</td>
<td>0.0991</td>
<td>0.048</td>
<td>0.058</td>
<td>0.026</td>
</tr>
<tr>
<td>2</td>
<td>0.362</td>
<td>0.588</td>
<td>0.117</td>
<td>0.270</td>
<td>0.446</td>
<td>0.1154</td>
<td>0.046</td>
<td>0.104</td>
<td>0.044</td>
</tr>
<tr>
<td>5</td>
<td>0.174</td>
<td>0.757</td>
<td>0.093</td>
<td>0.154</td>
<td>0.633</td>
<td>0.1145</td>
<td>0.041</td>
<td>0.204</td>
<td>0.075</td>
</tr>
<tr>
<td>10</td>
<td>0.092</td>
<td>0.852</td>
<td>0.064</td>
<td>0.087</td>
<td>0.757</td>
<td>0.0931</td>
<td>0.033</td>
<td>0.313</td>
<td>0.099</td>
</tr>
</tbody>
</table>

In Proposition 2, we have identified the strategic behaviour of firms when adjustment costs are positive and finite. Not surprisingly, we have that the optimal price choice of a firm is an increasing function in the rival’s price and this effect is captured by the coefficient R. Thus, the strategic behaviour of the firms in our model, is characterised by intertemporal strategic complementarity. Furthermore, the size of the effect of strategic complementarity as a function of λ follows a bell-shaped curve. For small adjustment costs, it increases, while, when adjustment costs become higher, it decreases until it reaches zero as λ approaches infinity. However, results 2) and 3) in the above Proposition say that this relationship depends on the measure of product differentiation s. When s is high, competition between firms becomes fiercer, since small changes in prices can have huge effects on consumer’s demand. In this case, to sustain a credible strategy of increasing prices it is necessary to have a relatively higher level of adjustment costs than in the case in which s is small and firms have higher market power. Finally, result 4) in Proposition 2) says that as s increases, firms tend to assign a relatively higher weight to the rival’s price in their strategic behaviour than in the case in which products are more differentiated. From Proposition 2, we can identify the effects of positive adjustment costs on the steady-state Markov perfect equilibrium of our model. The main result is stated in the following Proposition:

Proposition 3 When adjustment costs are positive and finite, prices at the symmetric steady state Markov perfect equilibrium are always higher than prices in the equilibrium of the repeated static game. This is true, even though, no adjustment costs are paid in the steady state.

The equilibrium values of the Markov perfect and the corresponding static Nash equilibrium for the same sample used in Table 1 are reported in the following table.
Table 2. Comparison between the symmetric Markov perfect and the counterpart static Nash equilibrium.

<table>
<thead>
<tr>
<th>s = 0.5, β = 0.95</th>
<th>s = 1, β = 0.95</th>
<th>s = 10, β = 0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>(\bar{p}^{mpe})</td>
<td>(\bar{p}^s)</td>
</tr>
<tr>
<td>0.1</td>
<td>1.086</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>1.199</td>
<td>1</td>
</tr>
<tr>
<td>0.8</td>
<td>1.225</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1.234</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1.233</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1.168</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1.106</td>
<td>1</td>
</tr>
</tbody>
</table>

From Proposition 3 we can say that in our dynamic game, the presence of adjustment costs and the hypothesis of Markov strategies create a strategic incentive for the firms to deviate from the equilibrium of the repeated static game even if adjustment costs are not paid in steady state. The result is a less competitive behaviour by the firms in the Markov equilibrium than in the static case. The economic force behind this result is the presence of intertemporal strategic complementarity that we have analysed above. A firm by pricing high today will induce high prices from the rival tomorrow, and the cost of adjusting prices lends credibility to this strategy, since it is costly to deviate from that strategy. The result in Proposition 3) contrasts with the one found in dynamic competition models with sticky prices, where general price stickiness creates a more competitive outcome in the subgame perfect equilibrium than in the static Nash equilibrium. The main reason is that in our model, price rigidity is modelled directly in the cost functions of the firms and there is a credibility effect associated with adjustment costs that can sustain high equilibrium price strategies, while, this credibility effect is absent with general price stickiness. We can notice that as products become close substitutes (\(s \) increases), the higher is the level of adjustment costs the higher is the difference between \(\bar{p}^{mpe} \) and \(\bar{p}^s \) relatively to the case where \(s \) is small. The intuition is the same as the one described above to explain results 2) and 3) of Proposition 2). When \(s \) is high, firms have a strong incentive to reduce their prices of a small amount in order to capture additional demand. Large adjustment costs can offset this incentive because the credibility of a high price equilibrium strategy will be stronger. Obviously, we know already from Proposition 2) that this credibility effect is not increasing monotonically with \(\lambda \), because as adjustment costs become extremely high, the coefficient \(R \) tends to zero. We shall analyse this aspect in more detail when we will consider the properties of the Markov perfect equilibrium in the limit game. The result in Proposition 3) states that when adjustment costs are positive, firms are better off in the steady state Markov perfect equilibrium than in the static Nash equilibrium of the repeated game. Thus, the presence of positive adjustment costs can induce a tacit collusive behaviour by firms. However, this is true only if products are not homogeneous, that is \(s < \infty \). If
products are perfect substitute, we already know that the Markov perfect equilibrium given by 10) converges to the static Nash equilibrium independently of the value of \(\lambda \). Moreover, in this case, both equilibria are equal to zero and we fall into the classical ”Bertrand paradox”.

3.1 Markov Perfect Equilibrium in the Limit Game

We now consider the properties of the Markov perfect equilibrium of our model in different limit cases. Differently from previous section, the results we are going to show are obtained analytically. We start our analysis evaluating the steady state Markov perfect equilibrium given by 10) in two limit cases, when adjustment costs tend to zero (\(\lambda \to 0 \)), and when they are infinite (\(\lambda \to \infty \)). This allows us to define the convergence properties of the steady-state Markov perfect equilibrium given by 10) toward the static Nash equilibrium 11), that, as we know from the introduction, is an important issue for the literature on dynamic competition. In order to describe the behaviour of the equilibrium in 10) in the two limit games, we need to evaluate the system A3) in the Appendix in the two extreme assumptions on the adjustment costs parameter \(\lambda \). The results for our limit games are the following:

Proposition 4 When adjustment costs tends to zero (\(\lambda \to 0 \)), the symmetric solution for the unknown parameters is the following: \(b^* = c^* = d^* = e^* = f^* = 0 \), and the steady-state Markov perfect equilibrium corresponds with the static Nash equilibrium of the repeated game. When adjustment costs tend to infinity (\(\lambda \to \infty \)), the symmetric solution for the unknown parameters is: \(b^* = \frac{1}{2}, c = 0, d^* = -2s, e^* = s, f^* = 0 \), and the steady-state Markov perfect equilibrium converges to the static Nash equilibrium given by 10).

Proof (see Appendix). The convergence of the steady state Markov perfect equilibrium toward the static Nash equilibrium when adjustment costs tend to zero confirms the result found in Lapham and Ware (1994), and it contradicts the results found in continuous time models of dynamic competition. In our discrete time model, as in Lapham and Ware (1994), the discontinuity found in continuous time models, when adjustment costs tend to zero, disappears. This result is supported by the numerical analysis developed by Karp and Perloff (1993), that gives also a possible explanation of why discrete and continuous time behave differently in the limit case of zero adjustment costs. In their model, they show that the steady-state Markov perfect equilibrium becomes more sensitive to \(\lambda \) when we pass from discrete time to continuous time. On the other hand, the second result is common in discrete and continuous time models, like in Maskin and Tirole (1987) and Reynolds (1991). The economic intuition behind this result is that: when adjustment costs become very large, the extra costs to change prices strategically outweigh the benefits, thus, firms are induced to behave nonstrategically and the steady-state subgame perfect equilibrium converges to the static solution. Of course, the case with infinite adjustment costs
is not very practical, especially for our purpose, since we are dealing with price adjustment costs that are normally associated with a small value of λ. However, this limit result is important because it shows that our value functions are continuous at infinity23. Finally, we consider what happens to the steady state Markov perfect equilibrium when β tends to zero, that is, when only present matters for firms. Fershtman and Kamien (1987), using a continuous time model with sticky prices, found that when only present matters for firms their stationary Markov perfect equilibrium converges to the competitive outcome. On the other hand, Driskill and McCafferty (1989), using a similar model but with adjustment costs in quantities, found that the Markov perfect equilibrium converges to the static Nash equilibrium of the repeated game without adjustment costs. In our model, we have the following result:

Proposition 5 As β, the discount factor, tends to zero, the steady state Markov perfect equilibrium given by (10) tends to the static Nash equilibrium of the repeated game without adjustment costs.

The proof of this Proposition can be easily seen taking the limit of the Markov perfect equilibrium in (10) for $\beta \to 0$. In this case, it is simple to see that the result is the static Nash equilibrium given by (11).

As we might expect, if future does not matter for firms, the result is the equilibrium of the one shot game. We obtain a result similar to the one of Driskill and McCafferty (1989), however, if we allow products to be homogeneous our equilibrium converges to the competitive outcome as in Fershtman and Kamien (1989), that, in our case, implies equilibrium prices equal to zero.

4 The Open-Loop Equilibrium

In this section we will analyse what are the effects of adjustment costs on equilibrium price if we force firms to behave using open-loop strategies. While Markov strategies are feedback rules, open-loop strategies are trajectory, or path, strategies. In particular, open-loop strategies are functions of the initial state of the game (that is known a priori) and of the calendar time. Markov perfect and open-loop strategies correspond to extreme assumptions about player’s capacities to make commitments about their future actions. Under the open-loop information pattern, the period of commitment is the same as the planning horizon, that in our case, is infinite. That is, at the beginning of the game, each player must make a binding commitment about the actions it will take at all future dates. Then, in general terms, a set of open-loop strategies constitutes a Nash equilibrium if, for each player, the path to which they are committed is an optimal response to the paths to which the other players have committed themselves. An open-loop strategy for player i is an infinite sequence

\[p_i^t(p_{0i}, p_{0j}, t) = \{ p_{i1}, p_{i2}, ..., p_{it}, ... \} \in \mathbb{R}^\infty, \text{specifying the price level at every period } t \text{ over an infinite horizon as a function of the initial price levels } (p_{0i}, p_{0j}) \text{ and the calendar time.} \] Formally, we define an open-loop equilibrium in the following way:

Definition 2 A pair of open-loop strategies \((p_{i1}^{ol}, p_{j1}^{ol})\) constitutes an open-loop equilibrium of our game if and only if the following inequalities are satisfied for each player:

\[\Pi_i(p_{i1}^{ol}, p_{j1}^{ol}) \geq \Pi_i(p_i, p_j^{ol}) \quad \text{with } i, j = 1, 2 \text{ and } i \neq j \]

Typically these equilibria are not subgame perfect by definition, then, they may or not may be "time consistent". There are examples of dynamic games in which open-loop equilibria are subgame perfect\(^{24}\), but in general when closed-loop strategies are feasible, subgame perfect equilibria will typically not be in open-loop strategies. In order to solve for the steady state open-loop equilibrium, we need to use the Pontryagin’s maximum principle of the optimal control theory, since it can be shown that there is a close relationship between derivation of an open-loop equilibrium and solving jointly different optimal control problems, one for each player\(^{25}\).

Proposition 6 The steady-state open-loop equilibrium is in correspondence one-to-one with the Nash equilibrium of the counterpart static game.

Proof. We need to solve a joint optimal control problem for both firms. The Hamiltonians are\(^{26}\):

\[H_i = \beta^t \pi_{it}(p_{it}, p_{jt}, p_{it-1}) + \mu_{ii}(t)(p_{it} - p_{it-1}) + \mu_{ij}(t)(p_{jt} - p_{jt-1}) \quad \text{with } i, j = 1, 2 \text{ and } i \neq j \quad (13) \]

The corresponding necessary conditions for an open-loop solution are:

\[\frac{\partial H_i}{\partial p_{it}} = \beta^t \frac{\partial \pi_{it}(p_{it}, p_{jt}, p_{it-1})}{\partial p_{it}} + \mu_{ii}(t) = 0 \quad (14.1) \]

\[\mu_{ii}(t) - \mu_{ii}(t-1) = -\frac{\partial H_i}{\partial p_{it-1}} = -\beta^t \frac{\partial \pi_{it}(p_{it}, p_{jt}, p_{it-1})}{\partial p_{it-1}} + \mu_{ii}(t) \quad (14.2) \]

\[\mu_{ij}(t) - \mu_{ij}(t-1) = -\frac{\partial H_i}{\partial p_{jt-1}} = \mu_{ij}(t) \quad (14.3) \]

\(^{24}\)Cellini and Lambertini (2001.b) show that in a differential oligopoly game with capital accumulation, Markov perfect and open-loop equilibria are the same if the dynamic of the accumulation takes the form a’ la Nerlove-Arrow or a’ la Ramsey.

\(^{25}\)For a detailed analysis, see Basar and Olsder (1995), Ch.6.

\(^{26}\)A formalization of the Maximum Principle in discrete time can be found in Leonard and Van Long (1998), Ch. 4.
in steady state we have $\mu_{ii}(t) = \mu_{ii}(t-1)$, $\mu_{ij}(t) = \mu_{ij}(t-1)$, $p_{it} = p_{it-1}$ and $p_{jt} = p_{jt-1}$. Thus, from the last two conditions we obtain $\mu_{ii}(t) = \mu_{ij}(t) = 0$. Using these results, we can see that in steady state, the initial problem reduces to the static maximization problem $(\partial u_i(p_{it}, p_{jt}) / \partial p_{it}) = 0$. Q.E.D.

Thus, there is a direct correspondence between the steady state open-loop and the static Nash equilibrium of our model. In a stationary open-loop equilibrium there are no strategic incentives to deviate from the static outcome of the model without adjustment costs. The main reason is that open-loop strategies are independent on state variables and then, there is no way to affect rival’s choice tomorrow changing strategy today as in Markov strategies. The same result has been found by Driskill and McCafferty (1989) and Jun and Vives (2001) using different models but it differs from the one in Fershtman and Kamien (1987) and Cellini and Lambertini (2001.a), since in their models, the open-loop solution implies higher output than the static solution, and they coincide only when the price level can adjust instantaneously. This difference is mainly due to the different specification of the transition law attached to the costate variables in the Hamiltonian system. In our model, as in Driskill and McCafferty (1989) and Jun and Vives (2001), this transition law is simply the definition of first difference in prices, while in Fershtman and Kamien (1987) and Cellini and Lambertini (2001.a), this transition law is the difference between current price level and the price on the demand function for each level of output. Finally, from a regulation point of view, if it could be possible to force firms to behave according to open-loop strategies it would be possible to increase the level of competition in equilibrium also with the presence of positive adjustment costs.

5 Conclusion

In this paper we have developed a dynamic duopoly model of price competition over an infinite horizon, with symmetric and convex price adjustment costs and spatially differentiated products. We have concentrated our analysis on the strategic interaction between firms in a linear quadratic difference game using two different equilibrium concepts: Markov perfect equilibrium, that has the property of being subgame perfect, and the open-loop equilibrium, that is normally not subgame perfect. Given the existence of adjustment costs in prices, in the steady state Markov perfect equilibrium there is a strategic incentive for firms to deviate from the repeated static Nash solution even if no adjustment costs are paid in equilibrium. In particular, we have shown that the equilibrium prices in steady state are higher in the stationary Markov equilibrium than in the counterpart static Nash solution without adjustment costs.

The economic force behind this result is the presence of intertemporal strategic complementarity. A firm by pricing high today will induce high prices from the rival

\footnotetext[27]{Obviously, in Driskill and McCafferty (1989) and Jun and Vives (2001) the transition law is the time derivative of prices.}
tomorrow. Moreover, the presence of adjustment costs leads to credibility in strategies that imply higher prices in equilibrium, for each firm, than in the case of static Nash equilibrium. This implies that firms are always better off when adjustment costs are positive and they behave according to Markov strategies and that the presence of these adjustment costs can sustain tacit collusive behaviour. However, this is true only if products are not homogeneous. If products are perfect substitutes, the steady state Markov perfect equilibrium always coincide with the static Nash equilibrium of the repeated game without adjustment costs and we fall into the classical "Bertrand paradox". The incentive to deviate from the static equilibrium is absent once we consider open-loop strategies. Indeed, the stationary open-loop equilibrium of our model is always in correspondence one-to-one with the Nash equilibrium of the static game. In addition, we have shown that when adjustment costs tend to zero or to infinity, the limit of our Markov perfect equilibrium converges to the static Nash equilibrium. The former result, confirmed by Lapham and Ware (1994), seems to be peculiar of discrete time models, since in continuous time models there is a discontinuity in the limit of the Markov perfect equilibrium as adjustment costs tend to zero. A number of extensions can be made in our analysis. Linear quadratic games do not perform well when uncertainty is considered. These particular models allow for specific shocks in the transition equation but they cannot deal, for instance, with shocks to the demand function. A natural extension of our analysis could be to relax the hypothesis of linearity of the strategies to allow for demand uncertainty. Another possible extension could be the analysis of the effects of asymmetric adjustment costs between firms, since this could give rise to a possible set of asymmetric steady state outcomes.
In this section we derive the equations for the unknown parameters of the value functions b_i, c_i, d_i, e_i and f_i that are to solved to compute a Markov perfect equilibrium in our model. We start with the solution of the two first order conditions given by 5) in the paper. Using the derivatives of the value functions 7.1) and 7.2) into 5) and calculating the relevant derivatives of the payoff functions, we obtain the following system of equations:

$$p_{it} = A_i + B_i p_{jt} + C_i p_{it-1}, \quad \text{for } i, j = 1, 2 \text{ and } i \neq j. \quad \text{(A1)}$$

where the coefficients A_i, B_i and C_i have the following functional form:

$$A_i = \frac{1}{2} + \beta b_i \left(2s + \lambda - \beta d_i\right); \quad B_i = \frac{(s + \beta e_i)}{(2s + \lambda - \beta d_i)}; \quad C_i = \frac{\lambda}{(2s + \lambda - \beta d_i)}$$

and where we assume that $2s + \lambda \neq \beta d_i$.

We can solve the system A.1) for p_{it} as a function of the state variables p_{it-1}^j, for $i, j = 1, 2 \text{ and } i \neq j$. The solution is the pair of linear Markov strategies given by 8) in the paper that we report here for simplicity of exposition:

$$\tilde{p}_{it} = F_i + R_i p_{jt-1} + M_i p_{it-1} \quad \text{for } i, j = 1, 2 \text{ and } i \neq j$$

where

$$F_i = \frac{A_i}{1 - B_i}; \quad R_i = \frac{B_i C_i}{(1 - B_i^2)}; \quad M_i = \frac{C_i}{(1 - B_i^2)}; \quad \text{for } i, j = 1, 2 \text{ and } i \neq j \quad \text{(A2)}$$

and where we assume $B_i \neq 1$, that implies that $(2s + \lambda - \beta d_i) \neq (s + \beta e_i)$.

Using 7) into the Euler equations 9), and then using 8), we can obtain four equations that depend only on the state variables, p_{it-1}, with $i = 1, 2$. Rearranging and matching the coefficients associated with the state variables as well as for the various constant terms, we obtain the following non-linear system of ten implicit equations in ten unknowns, b_i, c_i, d_i, e_i and f_i:

$$0 = s(R_j - M_i) F_i - b_i + M_j \left[1 - s(F_i - F_j\right) - \lambda (M_i - 1) F_i + \beta R_j [F_i(s + e_i + f_i) + c_i]$$

$$0 = s(M_j - R_i) F_i - c_i + \frac{1}{2} R_j - \lambda (F_j \Omega_j) + \beta R_i \left[1 - F_i(2s + \lambda + d_i) + F_j(s + e_i) + b_i\right]$$
\[0 = s(R_j - M_i)M_i - d_i - sM_j [M_j - R_j] - \lambda (M_i - 1)^2 + \beta R_j [M_i (s + e_i) + f_i R_j] \]

\[0 = s(R_j - M_i)R_i - e_i - sM_j [R_i - M_j] - \lambda (M_i - 1) R_i + \beta R_j [R_j (s + e_i) + f_i M_i] \]

\[0 = s(R_i - M_j)R_i - f_i - sR_i (R_i - M_j) - \lambda R_i^2 + \beta R_i [M_j (s + e_i) - R_i (2s + \lambda - d_i)] \]

(A3)

where for all the equations we have that \(i, j = 1, 2\) and \(i \neq j\). Imposing symmetry, that is \(b_1 = b_2 = b, c_1 = c_2 = c, d_1 = d_2 = d, e_1 = e_2 = e, f_1 = f_2 = f, F_1 = F_2 = F, R_1 = R_2 = R\) and \(M_1 = M_2 = M\), implies that the steady state associated with the system 8) in the paper is given by:

\[p^{mpe}_i = \frac{F}{1 - (M + R)} \]

(A4)

and substituting the definitions for the coefficients \(F, R\) and \(M\) given above, we find equation 10) in the paper.

We use numerical techniques to solve the system A3). To solve system A3), we first define different set of values for the structural parameters of the model, \((s, \lambda \text{ and } \beta)\). We evaluate the system A3) for these values and then look for the corresponding solution for the parameters \(b, c, d, e\) and \(f\) using the Newton algorithm. Using the restrictions described in the paper we are able to obtain a unique solution for any set of values of the structural parameters. In our analysis the value of \(\beta\) is fixed to 0.95 as in Karp and Perloff (1993). The parameters \(s\) and \(\lambda\) varies from 0 to 1000 with different length of variation. A sample of the results is reported in the following tables:

Table A1). Solution for the parameters \(b, c, d, e\) and \(f\) given values for \(s, \lambda \text{ and } \beta\)

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>(s = 0.5, \beta = 0.95)</th>
<th>(s = 1, \beta = 0.95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>0.1</td>
<td>0.129</td>
<td>0.049</td>
</tr>
<tr>
<td>0.5</td>
<td>0.373</td>
<td>0.125</td>
</tr>
<tr>
<td>1</td>
<td>0.488</td>
<td>0.146</td>
</tr>
<tr>
<td>2</td>
<td>0.552</td>
<td>0.139</td>
</tr>
<tr>
<td>5</td>
<td>0.554</td>
<td>0.097</td>
</tr>
<tr>
<td>10</td>
<td>0.535</td>
<td>0.063</td>
</tr>
<tr>
<td>25</td>
<td>0.516</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Table A2). Solution for the parameters \(b, c, d, e\) and \(f\) given values for \(s, \lambda \text{ and } \beta\)
Proof of Proposition 4. First of all, we impose symmetry in the system A3). Then, we consider the case in which $\lambda \to 0$. Evaluating the term C at $\lambda = 0$ we clearly obtain that $C(\lambda=0) = 0$, and using this fact into the definitions of R and M, we have that $R(\lambda=0) = 0; M(\lambda=0) = 0$. Thus, irrespective of the value of F, using $R(\lambda=0) = 0; M(\lambda=0) = 0$ into system A3) we have: $b^* = c^* = d^* = e^* = f^* = 0$. Furthermore, as in Lapham and Ware (1994), the Jacobian matrix associated with that system is an identity matrix, and thus, non singular. This implies, that at λ close to zero, the solution for the unknown parameters is a continuous function of λ. Substituting $b^* = d^* = e^* = 0$ into 10) in the paper, we see that the Markov perfect equilibrium becomes equal to $\frac{1}{2}$, that is the static Nash equilibrium given by 11). Now consider the case in which $\lambda \to \infty$. Taking the limit for $\lambda \to \infty$ of the coefficients A, B and $C,$ we obtain $\lim_{\lambda \to \infty} A = 0, \lim_{\lambda \to \infty} B = 0$ and $\lim_{\lambda \to \infty} C = 1$. Applying the well known rules for limits, we have that $\lim_{\lambda \to \infty} F = 0, \lim_{\lambda \to \infty} R = 0$ and $\lim_{\lambda \to \infty} M = 1$. Thus, taking the limit for $\lambda \to \infty$ of the implicit functions in the system A3) gives the following results for the unknown parameters: $b^* = 1/2, c^* = 0, d^* = -2s, e^* = s$ and $f^* = 0$. Again, substituting this fact into the Markov perfect equilibrium given by 10) we can see that it coincides with the static Nash equilibrium 11). Obviously, we can obtain the same limit result for the Markov perfect equilibrium, taking the limit for $\lambda \to \infty$ of A4) and applying the Hospital’s rule.

References

SUST 1.2002 K. TANO, M.D. FAMINOW, M. KAMUANGA and B. SWALLOW: Using Conjoint Analysis to Estimate Farmers' Preferences for Cattle Traits in West Africa

ETA 2.2002 Efrem CASTELNUOVO and Paolo SURICO: What Does Monetary Policy Reveal about Central Bank's Preferences?

CLIM 4.2002 Andreas Löschel: Technological Change in Economic Models of Environmental Policy: A Survey

VOL 5.2002 Carlo CARRARO and Carmen MARCHIORI: Stable Coalitions

NRM 9.2002 Giuseppe DI VITA: Renewable Resources and Waste Recycling

KNOW 10.2002 Giorgio BRUNELLO: Is Training More Frequent when Wage Compression is Higher? Evidence from 11 European Countries

ETA 11.2002 Mordecai KURZ, Hehui JIN and Maurizio MOBILE: Endogenous Fluctuations and the Role of Monetary Policy

KNOW 12.2002 Reyer GERLAGH and Marjan W. HOFKES: Escaping Lock-in: The Scope for a Transition towards Sustainable Growth?

NRM 13.2002 Michele MORETTO and Paolo ROSATO: The Use of Common Property Resources: A Dynamic Model

CLIM 14.2002 Philippe QUÉBION: Macroeconomic Effects of an Energy Saving Policy in the Public Sector

CLIM 16.2002 Francesco RICCI: Environmental Policy Growth when Inputs are Differentiated in Pollution Intensity

ETA 17.2002 Alberto PETRUCCI: Devaluation (Levels versus Rates) and Balance of Payments in a Cash-in-Advance Economy

Coalition Theory Network 18.2002 László Á. KÓCZY (liv): The Core in the Presence of Externalities

NRM 21.2002 Fausto CAVALLARO and Luigi CIRAOLO: Economic and Environmental Sustainability: A Dynamic Approach in Insular Systems

CLIM 22.2002 Barbara BUCHNER, Carlo CARRARO, Igor CERSOSIMO and Carmen MARCHIORI: Back to Kyoto? US Participation and the Linkage between R&D and Climate Cooperation

CLIM 23.2002 Andreas Löschel and ZhongXIANG ZHANG: The Economic and Environmental Implications of the US Repudiation of the Kyoto Protocol and the Subsequent Deals in Bonn and Marrakech

ETA 24.2002 Marzio GALEOTTI, Louis J. MACCINI and Fabio SCHIANTARELLI: Inventories, Employment and Hours

ETA 26.2002 Adam B. JAFFE, Richard G. NEWELL and Robert N. STAVINS: Environmental Policy and Technological Change

SUST 27.2002 Joseph C. COOPER and Giovanni SIGNORELLO: Farmer Premiums for the Voluntary Adoption of Conservation Plans

SUST 28.2002 The ANSEA Network: Towards An Analytical Strategic Environmental Assessment

KNOW 29.2002 Paolo SURICO: Geographic Concentration and Increasing Returns: a Survey of Evidence

ETA 30.2002 Robert N. STAVINS: Lessons from the American Experiment with Market-Based Environmental Policies
NRM 31.2002 Carlo GIUPPONI and Paolo ROSATO: Multi-Criteria Analysis and Decision-Support for Water Management at the Catchment Scale: An Application to Diffuse Pollution Control in the Venice Lagoon
NRM 32.2002 Robert N. STAVINS: National Environmental Policy During the Clinton Years
KNOW 33.2002 A. SOUBEYRAN and H. STAHN: Do Investments in Specialized Knowledge Lead to Composite Good Industries?
KNOW 34.2002 G. BRUNELLO, M. L. PARISSI and Daniela SONEDDA: Labor Taxes, Wage Setting and the Relative Wage Effect
CLIM 36.2002 T.TIETENBERG (iv): The Tradable Permits Approach to Protecting the Commons: What Have We Learned?
NRM 40.2002 S. M. CAVANAGH, W. M. HANEKAMP and R. N. STAVINS: Muffled Price Signals: Household Water Demand under Increasing-Block Prices
CLIM 42.2002 C. OHL (iv): Inducing Environmental Co-operation by the Design of Emission Permits
CLIM 43.2002 J. EYCKMANS, D. VAN REGERMORTE and V. VAN STEENBERGHE (iv): Is Kyoto Fatally Flawed? An Analysis with MacGEM
CLIM 44.2002 A. ANTOCI and S. BORGHESE (iv): Working Too Much in a Polluted World: A North-South Evolutionary Model
ETA 45.2002 P. G. FREDRIKSSON, Johan A. LIST and Daniel MILLIMET (iv): Chasing the Smokestack: Strategic Policymaking with Multiple Instruments
ETA 46.2002 Z. YU (iv): A Theory of Strategic Vertical DF1 and the Missing Pollution-Haven Effect
SUST 47.2002 Y. H. FARZIN: Can an Exhaustible Resource Economy Be Sustainable?
SUST 48.2002 Y. H. FARZIN: Sustainability and Hamiltonian Value
KNOW 49.2002 C. PIGA and M. VIVARELLI: Cooperation in R&D and Sample Selection
Coalition Theory Network 50.2002 M. SERTEL and A. SLINKO (iv): Ranking Committees, Words or Multisets
Coalition Theory Network 51.2002 Sergio CURRARINI (iv): Stable Organizations with Externalities
ETA 52.2002 Robert N. STAVINS: Experience with Market-Based Policy Instruments
CLIM 54.2002 Scott BARRETT (iii): Towards a Better Climate Treaty
ETA 55.2002 Richard G. NEWELL and Robert N. STAVINS: Cost Heterogeneity and the Potential Savings from Market-Based Policies
SUST 56.2002 Paolo ROSATO and Edi DEFRANCESCO: Individual Travel Cost Method and Flow Fixed Costs
SUST 57.2002 Vladimir KOTOV and Elena NIKITINA (ivii): Reorganisation of Environmental Policy in Russia: The Decade of Success and Failures in Implementation of Perspective Quests
VOL 60.2002 Giovanni DI BARTOLOMEO, Jacob ENGWERDA, Joseph PLASMAN and Bas VAN AARLE: Staying Together or Breaking Apart: Policy-Makers’ Endogenous Coalitions Formation in the European Economic and Monetary Union
PRIV 62.2002 Carlo CAPUANO: Demand Growth, Entry and Collusion Sustainability
PRIV 63.2002 Federico MUNARI and Raffaele ORIANI: Privatization and R&D Performance: An Empirical Analysis Based on Tobin’s Q
PRIV 64.2002 Federico MUNARI and Maurizio SOBRERO: The Effects of Privatization on R&D Investments and Patent Productivity
SUST 65.2002 Orley ASHENFELTER and Michael GREENSTONE: Using Mandated Speed Limits to Measure the Value of a Statistical Life
CLIM 68.2002 Barbara K. BUCHNER and Roberto ROSON: Conflicting Perspectives in Trade and Environmental Negotiations
CLIM 69.2002 Philippe QUIRION: Complying with the Kyoto Protocol under Uncertainty: Taxes or Tradable Permits?
SUST 70.2002 Anna ALBERINI, Patrizia RIGANTI and Alberto LONGO: Can People Value the Aesthetic and Use Services of Urban Sites? Evidence from a Survey of Belfast Residents
SUST 71.2002 Marco PEROCOCO: Discounting Environmental Effects in Project Appraisal
Move to Markets? An Empirical Analysis of Sudeshna GHOSH BANERJEE and Michael C. MUNGER

Andreas LANGE

Jens HORBACH

Privatization and Labor Force Restructuring Around the Alberto CHONG and Florencio LÓPEZ-DE-SILANES

Haruo IMAI and Mayumi HORIE

Does Ownership Affect Firms’ Efficiency? Panel Data Anna BOTTASSO and Alessandro SEMBENELLI

Banu BAYRAMOGLU LISE and Wietze LISE: Vito FRAGNELLI and Maria Erminia MARINA

The Abnormal Returns of UK Privatisations: From Underpricing Evidence from the Fixed-Line Telecommunications Sector in Developing Economies Massimo FLORIO and Katiuscia MANZONI

Mohammed OMRAN: Laurent FRANCKX

Alberto R. PETRUCCI

François DEGEORGE, Dirk JENTER, Alberto MOEL and Peter TUFANO

Nandini GUPTA

Guillaume GIRMENS and Michel GUILLARD

Privatization and Investment: Crowding-Out Effect vs Financial STARRETT

EHRLICH, Karl-Goran MALER, Nils KAUTSKY, Jane LUBCHENCO, Steve SCHNEIDER and David Geoflrey HEAL, Brian WALKER, Simon LEVIN, Kenneth ARROW, Partha DASGUPTA, Gretchen DAILY, Paul FORTE and Matteo MANERA

Gianfranco FORTE and Matteo MANERA

The Political Economy of Emission Tax Design in Environmental Policy

Koen ARIGA and Giorgio BRUNELLO

Are the More Educated Receiving More Training? Evidence from Thailand

Nelson LOURENÇO, Carlos RUSSO MACHADO, Maria do ROSÁRIO JORGE and Luis RODRIGUES: An Integrated Approach to Understand Territory Dynamics. The Coastal Alentejo (Portugal)

Peter ZAPFEL and Matti VAINIO (iv): Pathways to European Greenhouse Gas Emissions Trading History and Misconceptions

Pierre COURTOIS: Influence Processes in Climate Change Negotiations: Modelling the Rounds

Vito FRAGNELLI and Maria Erminia MARINA (ivii): Environmental Pollution Risk and Insurance

Laurent FRANCKX (iviii): Environmental Enforcement with Endogenous Ambient Monitoring

Timo GOESCHL and Timothy SWANSON (iviii): Lost Horizons. The noncooperative management of an evolutionary biological system.

Hans KEIDING (iviii): Environmental Effects of Consumption: An Approach Using DEA and Cost Sharing

Wietze LISE (iviii): A Game Model of People’s Participation in Forest Management in Northern India

Jens HORBACH: Structural Change and Environmental Kuznets Curves

Martin P. GROSSKOPF: Towards a More Appropriate Method for Determining the Optimal Scale of Production Units

Scott BARRETT and Robert STAVINS: Increasing Participation and Compliance in International Climate Change Agreements

Batu BAYRAMOGLU LISE and Wietze LISE: Climate Change, Environmental NGOs and Public Awareness in the Netherlands: Perceptions and Reality

Mathieu GLACHANT: The Political Economy of Emission Tax Design in Environmental Policy

Kenn ARIGA and Giorgio BRUNELLO: Are the More Educated Receiving More Training? Evidence from Thailand

Gianfranco FORTE and Matteo MANERA: Forecasting Volatility in European Stock Markets with Non-linear GARCH Models

Geoffrey HEAL: Bundling Biodiversity

Geoffrey HEAL, Brian WALKER, Simon LEVIN, Kenneth ARROW, Partha DASGUPTA, Gretchen DAILY, Paul EHRlich, Karl-Goran MALER, Nils KAUTSKY, Jane LUBCHENCO, Steve SCHNEIDER and David STARRETT: Genetic Diversity and Interdependent Crop Choices in Agriculture

Geoffrey HEAL: Biodiversity and Globalization

Andreas LANGE: Heterogeneous International Agreements – If per capita emission levels matter

Pierre-André JOUVET and Walid OUESLATI: Tax Reform and Public Spending Trade-offs in an Endogenous Growth Model with Environmental Externality

Anna BOTTASSO and Alessandro SEMBENELLI: Does Ownership Affect Firms’ Efficiency? Panel Data Evidence on Italy

Bernardo BORTOLOTTI and Alessandro SEMBENELLI: Does Ownership Affect Firms’ Efficiency? Panel Data Evidence on Italy

Haruo IMAI and Mayumi HORIE (iviii): Pre-Negotiation for an International Emission Reduction Game

Sudeshna GHOSH BANERJEE and Michael C. MUNGER: Move to Markets? An Empirical Analysis of Privatisation in Developing Countries

Guillaume GIRMENS and Michel GUILLARD: Privatization and Investment: Crowding-Out Effect vs Financial Diversification

Alberto CHONG and Florencio LÓPEZ-DE-SILANES: Privatization and Labor Force Restructuring Around the World

Nandini GUPTA: Partial Privatization and Firm Performance

François DEGEORGE, Dirk JENTER, Alberto MOEL and Peter TUFANO: Selling Company Shares to Reluctant Employees: France Telecom’s Experience
PRIV 112.2002 Isaac OTCHERE: Intra-Industry Effects of Privatization Announcements: Evidence from Developed and Developing Countries

PRIV 113.2002 Yannis KATSOUKAKOS and Elissavet LIKOYANNI: Fiscal and Other Macroeconomic Effects of Privatization

PRIV 115.2002 D. Teja FLOTCHO: A Note on Consumption Correlations and European Financial Integration

PRIV 2.2003 Ibolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review

PRIV 3.2003 Wietze LISE, Claudia KEMPERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market

KNOW 5.2003 Reyer GERLAGH: Induced Technological Change under Technological Competition

ETA 6.2003 Efrem CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model

SIEV 7.2003 Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers

NRM 8.2003 Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?

CLIM 9.2003 A. CAPARROS, J.-C. PEREAU and T. TAZDAÎF: North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information

KNOW 10.2003 Giorgio BRUNELLO and Danièle CHECCHI: School Quality and Family Background in Italy

CLIM 11.2003 Efrem CASTELNUOVO and Marzio GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis

KNOW 12.2003 Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art

KNOW 15.2003 Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP (lxx): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life

KNOW 16.2003 Alexandra BITUSIKOVA (lxx): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia

KNOW 17.2003 Billy E. VAUGHN and Katarina MLEKOV (lxx): A Stage Model of Developing an Inclusive Community

KNOW 18.2003 Selma van LONDEN and Arie de RUIJTER (lxx): Managing Diversity in a Glocalizing World

Coalition Theory Network

PRIV 20.2003 Giacomo CALZOLARI and Alessandro PAVAN (lx): Monopoly with Resale

PRIV 22.2003 Marco LiCalzi and Alessandro PAVAN (lx): Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions

PRIV 23.2003 David ETTINGER (lx): Bidding among Friends and Enemies

PRIV 24.2003 Hanna VARTIAINEN (lx): Auction Design without Commitment

PRIV 26.2003 Christine A. PARLOUR and Uday RAJAN (lx): Rationing in IPOs

PRIV 27.2003 Kjell G. NYBORG and Ilya A. STREBULAEV (lx): Multiple Unit Auctions and Short Squeezes

PRIV 28.2003 Anders LUNANDER and Jan-Eric NILSSON (lx): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts

PRIV 30.2003 Emiel MAASLAND and Sander ONDERSTAL (lx): Auctions with Financial Externalities

ETA 31.2003 Michael FINUS and Bianca RUNDHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games

KNOW 32.2003 Michele MORETTO: Competition and Irreversible Investments under Uncertainty

PRIV 33.2003 Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?

KNOW 34.2003 Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Treatment Effect Analysis

ETA 35.2003 Alessandra DEL BOCA, Marzo GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation

GG 36.2003 Matthieu GLACHANT: Voluntary Agreements under Endogenous Legislative Threats

PRIV 37.2003 Narjess BOUBAKRI, Jean-Claude COSSET and Omran GUEHAMI: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection

CLIM 38.2003 Rolf GOLOMBEK and Michael HOEL: Climate Policy under Technology Spillovers
2002 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>VOL</td>
<td>Voluntary and International Agreements</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SUST</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Dino Pinelli</td>
</tr>
<tr>
<td>MGMT</td>
<td>Corporate Sustainable Management</td>
<td>Andrea Marsanich</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

2003 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>